Tìm các số nguyên n sao cho biểu thức \(P=\frac{3n+2}{n-1}\) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3n-2}{n+1}=\frac{3x+3-5}{n+1}=\frac{3.\left(x+1\right)-5}{n+1}=3+\frac{-5}{n+1}\)(ĐKXĐ:\(n\ne-1\))
Đề A nguyên thì \(3+\frac{-5}{n+1}\)nguyên
Có \(3\in Z\)nên để \(3+\frac{-5}{n+1}\)nguyên thì \(\frac{-5}{n+1}\)nguyên
Để \(\frac{-5}{n+1}\)nguyên thì \(-5⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-5\right)\)
\(\Leftrightarrow n+1\in\left\{-5;-1;1;5\right\}\)
\(\Leftrightarrow n\in\left\{-6;-2;0;4\right\}\)(Đều thỏa mãn ĐK)
Vậy......
\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
Vì A nguyên nên 3n + 2 chia hết cho n - 1 => 3n - 3 + 5 chia hết cho n - 1 => 5 chia hết cho n - 1 => n - 1 thuộc Ư(5) = { -1 ; 1 ; -5 ; 5 }
=> n thuộc { 0 ; 2 ; -; 6 }
Vậy n thuộc { 0 ; 2 ; -; 6 } thoản mãn đề bài.
A=3n+2/n-1=3+5/n-1
để a có gia trị nguyên thì 3+5/n-1 có giá trị nguyên mà 3 lầ số nguyên thi 5/n-1 có giá trị nguyên nên
n-1 thuộc ư(5)={1;-1;5;-5} nên n thuoocj tập hợp {2;0;6;-4}
A là số nguyên khi và chỉ khi 3 chia hết cho (n - 2) hay (n - 2) ∈ Ư(3)
Ta có: Ư(3) = {-3 ; -1 ; 1 ; 3}
n – 2 = -3 ⇒ n = -1
n – 2 = -1 ⇒ n = 1
n – 2 = 1 ⇒ n = 3
n – 2 = 3 ⇒ n = 5
Vậy n ∈ {-1; 1 ; 3 ; 5} thì A là số nguyên
Để P nguyên
=> 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
=> 3.(n - 1) + 5 chia hết cho n - 1
Vì 3.(n - 1) chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)
=> n - 1 thuộc {1; -1; 5; -5}
=> n thuộc {2; 0; 6; -4}