K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

ai chỉ giúp em vs đi ạ em cần gấp lắm

26 tháng 8 2021

Khoảng cách từ M để ABC bằng MA

Khoảng cách từ EF đến SAB bằng EM = AF

29 tháng 5 2022

Hướng dẫn: A đạt GTLN khi \(\dfrac{1}{A}\) đạt GTNN

Ta có: \(x^2+2\ge0\forall x\)

\(\Rightarrow A=\dfrac{1}{x^2+2}\le\dfrac{1}{2}\forall x\)

Vậy GTLN của A là 1/2

=> A

29 tháng 5 2022

Câu 2: B đạt GTLN khi và chỉ khi x2 đạt giá trị nhỏ nhất

⇔ x2=0 ⇒B = 10 - 0= 0 

  Chọn đáp án B nhe

Câu 3: Có A= 4x - 2x2= (-2x+ 4x - 1) + 1=\(-2\left(x^2-2x+1\right)+1\)

⇔ A= \(-2\left(x-1\right)^2+1\le1\)

Chọn đáp án B nha

 

19 tháng 5 2021

vẽ lại mạch ta có RAM//RMN//RNB

đặt theo thứ tự 3 R là a,b,c

ta có a+b+c=1 (1)

điện trở tương đương \(\dfrac{1}{R_{td}}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Rightarrow I=\dfrac{U}{R_{td}}=9.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) với a,b,c>0

áp dụng bất đẳng thức cô si cho \(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\)  \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{\sqrt[3]{abc}}\ge\dfrac{3}{\left(\dfrac{a+b+c}{3}\right)}=\dfrac{9}{a+b+c}=9\)

\(\Leftrightarrow9\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge81\Leftrightarrow I\ge81\) I min =81 ( úi dồi ôi O_o hơi to mà vẫn đúng đá nhỉ)

dấu ''='' xảy ra \(\Leftrightarrow a=b=c\left(2\right)\)

từ (1) (2) \(\Rightarrow a=b=c=\dfrac{1}{3}\left(\Omega\right)\)

vậy ... (V LUN MẤT CẢ BUỔI TỐI R BÀI KHÓ QUÁ EM ĐANG ÔN HSG À )

 

 

19 tháng 5 2021

em ơi chụp cả cái mạch điện a xem nào sao chụp nó bị mất r

Câu 1: A
Câu 2: B

Câu 3: D
Câu 4: A

Câu 5: C

Câu 6: B

Câu 7: A

Câu 9: B

 

10 tháng 12 2021

Câu 1.

Khi mở khóa K:

\(I_m=I_1=0,4A\)

Khi đóng khóa K:

\(I_m=I_1+I_2=0,6\Rightarrow I_2=0,2A\)

\(U_1=0,4\cdot5=2V\)

\(\Rightarrow U_2=U_1=2V\)

\(\Rightarrow U=U_1=U_2=2V\)

\(R_2=\dfrac{U_2}{I_2}=\dfrac{2}{0,2}=10\Omega\)

29 tháng 5 2022

có bạn giúp r nha bạn

29 tháng 5 2022

Mik cần lời giải á, các bạn toàn cho mik đáp án hoặc là cho mỗi câu 123 (Q▪︎Q)

8 tháng 2 2022

1, \(\left\{{}\begin{matrix}4x+2y=24\\7x-2y=31\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=55\\y=12-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)

2, thiếu đề 

4, \(\left\{{}\begin{matrix}4x-y-24=10x-4y\\3y-2=4-x+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x+3y=24\\x+2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x+3y=24\\-6x-12y=-36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15y=60\\x=6-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=-2\end{matrix}\right.\)

25 tháng 9 2021

undefinedundefined

Bạn tham khảo nhé :)) Cái đoạn tính Lim là mình sử dụng máy tính cầm tay cho nhanh nên có thể nó hơi tắt 

8.31:

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

XétΔBAC có BM/BA=BN/BC

nên MN//AC

=>MN vuông góc BD

=>MN vuông góc MQ

Xét tứ giác MNPQ có

MQ//NP

MQ=NP

góc NMQ=90 độ

=>MNPQ là hình chữ nhật

=>M,N,P,Q cùng nằm trên 1 đường tròn

6 tháng 5 2022

-Bài 3:

2) -Áp dụng BĐT Caushy Schwarz ta có:

\(A=\dfrac{1}{x^3+3xy^2}+\dfrac{1}{y^3+3x^2y}\ge\dfrac{\left(1+1\right)^2}{x^3+3xy^2+3x^2y+y^3}=\dfrac{4}{\left(x+y\right)^3}\ge\dfrac{4}{1^3}=4\)-Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)