K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Sakura Harunoo bạn Nguyễn Thị Hồng Nhung bạn đó copp cho a+b+c=0. CMR:a 4 +b 4 +c 4 = 2(a 2 b - Online Math

14 tháng 9 2017

Sakura Harunoo nhớ nhìn kĩ nhé

8 tháng 7 2019

Ta có: 

a) 

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2a^2c^2-2b^2c^2\)

\(=\left[\left(a+b+c\right)^2-2ab-2ac-2bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=4\left[ab+ac+bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2-8abc\left(a+b+c\right)-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

b)\(=2\left(ab+bc+ac\right)^2-4\left(abbc+abca+bcca\right)\)

\(=2\left(ab+bc+ac\right)^2-4abc\left(a+b+c\right)=2\left(ab+bc+ac\right)^2\)

c) \(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=\frac{a^4+b^4+c^4+a^4+b^4+c^4}{2}\)

\(=a^4+b^4+c^4\)

16 tháng 11 2017

Hình như đề sai rồi bạn ơi. thử thay a=1,5 b=1 c=0,5 xem

11 tháng 8 2020

Với điều kiện \(ab+bc+ca+abc=4\) thì \(VP-VT=\frac{bc^2\left(a-b\right)^2+ca^2\left(b-c\right)^2+ab^2\left(c-a\right)^2}{\left(a^2+2b\right)\left(b^2+2c\right)\left(c^2+2a\right)}\ge0\)

12 tháng 8 2020

Cauchy ngược dấu + Svacxo + gt coi 

14 tháng 11 2016

tao chịu ko hiểu mới học lớp 6 nhé very sorrrrrrrrrrrrrryyyyyyyyyyyyyyyyyyyyyy

14 tháng 11 2016

k nha

ai km ình k lai có 21 nick đó

\(1,VT=2\left(a^3+b^3+c^3\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Ta có \(a^3+b^3\ge ab\left(a+b\right)\)

              \(b^3+c^3\ge bc\left(b+c\right)\)

            \(c^3+a^3\ge ca\left(c+a\right)\)

Cộng từng vế các bđt trên  ta được

\(VT\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Bây giờ ta cm:

\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Bất đẳng thức trên luôn đúng

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c

2 tháng 4 2020

Mấy bài này dễ mà, tách ra rồi Cauchy là xong hết =))

18 tháng 3 2018

a)

\(4x^2+4x+5>0\)

\(\Leftrightarrow4x^2+4x+4+1>0\)

\(\Leftrightarrow\left(2x+2\right)^2+1>0\) ( luôn đúng)

b)

\(x^2-x+1>0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}>0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) ( luôn đúng)

19 tháng 3 2018

câu a sai nha Nhã Doanh cẩn thận tí đi

25 tháng 3 2016

Cho f(x)=ax^2+bx+c với a,b,c là số hữu tỉ .Biết 13a+b+2c>0

Chứng Minh: trong 2 biểu thức f(-2);f(3) ít nhất có 1 biểu thức dương

hãy tích khi ko muốn tích nha các bạn 

đùa thui!!!

25 tháng 3 2016

tớ mún tích cho cậu nhưng cậu nói thế thì thui nha
 

13 tháng 4 2019

adult pron