Qua điểm o lẩy trên đường cao BH cùa A ABC kỏ các đường thẳng AO và CO, chúng cắt các cạnh Be và BA tương ửní> lại các điểm K và M. Chứng minh rằng KHB - MHB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi diện tích các hình tam giác ABC, MAB, MAC, MBC lần lượt là S, S 1 , S 2 , S 3 . Ta có:
S = S 1 + S 2 + S 3
Trong đó: S = 1/2 AD.BC = 1/2 BE. AC = 1/2 CF. AB
S 1 = 1/2 MT. AB
S 2 = 1/2 MK. AC
S 3 = 1/2 MH. BC
Gọi F là giao điểm của BE và CD.
Ta có DI // AC (gt) ⇒ ∠D1 = ∠C1 (so le trong)
và ∠F1 = ∠F2 (đối đỉnh)
Do đó: ΔDFI ∼ ΔCFE (g.g)
Tương tự ta có: ΔDFB ∼ ΔKFE
Từ (1), (2) ⇒ FC.FI = FB.FK
Do đó theo định lí Talét đảo ta có KI // BC.
EG+ FH= AB
<=> EG/AB+ FH/AB = 1
Áp dụng tính chất đoạn thẳng tỷ lệ, ta có:
FH/AB= CF/BC
EG/AB =CE/BC=(CF+FE)/BC
= (CF + BC - 2CF)/BC=(BC-CF)/BC = 1- CF/BC
Vậy EG/AB+ FH/AB =1- CF/BC + CF/BC =1
Giải thích các bước giải:
a.Ta có xy//BC,MD//AB��//��,��//��
→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^
Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��
→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)
→AD=BM,MD=AB→��=��,��=��
Tương tự chứng minh được AE=MC,ME=AC��=��,��=��
→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��
→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)
b.Gọi AM∩BD=I��∩��=�
→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)
Mà AD=BM��=��
→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)
→IA=IM,IB=ID→��=��,��=��
Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^
Kết hợp AE=CM��=��
→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)
→ˆAIE=ˆMIC→���^=���^
→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�
→E,I,C→�,�,� thẳng hàng
→CE,AM,BD→��,��,�� đồng quy
Trên cạnh AB lấp điểm I sao cho BI = EG.
Nối IG.
Xét tứ giác IBEG có IB//EG và IB = EG nên IBEG là hình bình hành
=> IG//BC và IG= BE
Mà BE = CF nên IG = CF.
Vì IG//BC nên góc AIG = góc IBE mà góc IBE = góc HFC do HF//AB
=> góc AIG = góc HFC
Lại có góc AGI = góc HCF nên ta có tam giác AIG = tam giác HFC (g.c.g) => AI = HF
Ta có AB = BI + AI = EG + FH (vì A I= FH)