K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(I=\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left[\left(\dfrac{a+\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right)\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)

\(=\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left(\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\cdot\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-b\right)}\)

\(=\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2\cdot\left(a-\sqrt{ab}+b\right)}\)

Khi a=16 và b=4 thì \(I=\dfrac{16+4+4\cdot\sqrt{16\cdot4}}{\left(4-2\right)^2\cdot\left(16-\sqrt{16\cdot4}+4\right)}=\dfrac{20+4\cdot8}{4\cdot12}\)

\(=\dfrac{20+32}{48}=\dfrac{52}{48}=\dfrac{13}{12}\)

8 tháng 8 2023

kh đúng

26 tháng 6 2023

câu a ở phần mẫu của cụm đầu tiên cái \(\left(\sqrt{a+\sqrt{b}}\right)^2\rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\) giúp em với ạ ( em cảm ơn )

26 tháng 6 2023

tiện bạn coi giùm mình lại đề câu b luôn, nó sao sao ấy:v

8 tháng 2 2021

a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\\a\ne b\end{matrix}\right.\)

P = \(\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\left(\dfrac{a+\sqrt{ab}+b-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)\(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)

\(\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\dfrac{\sqrt{a}-\sqrt{b}}{a-b}\)

\(\dfrac{1}{a-\sqrt{ab}+b}\)

b) có a = 16 và b = 4 (thoả mãn ĐKXĐ)

Thay a = 16, b =4 vào P có:

P = \(\dfrac{1}{16-\sqrt{16.4}+4}\)\(\dfrac{1}{12}\)

Vậy tại a =16, b = 4 thì P = \(\dfrac{1}{12}\)

11 tháng 7 2023

Đăt\(\sqrt{a}\)=x, \(\sqrt{b}\)=y (x,y>0)
=>xy+1=4y => 4y≥ \(2\sqrt{xy}\)=>\(2\sqrt{y}\)\(\sqrt{x}\)=> 4y≥x=> 4≥ \(\dfrac{x}{y}\)=> \(\dfrac{1}{4}\)\(\dfrac{y}{x}\)=>\(\dfrac{-1}{4}\)\(\dfrac{-y}{x}\)
Xét:A=(\(\dfrac{xy+y}{x+y}\)+\(\dfrac{xy+x}{y-x}\)+1):(\(\dfrac{xy+y}{x+y}\)+\(\dfrac{xy+x}{x-y}\)-1)
         = \(\dfrac{-2y^2\left(x+1\right)}{\left(x-y\right)\left(x+y\right)}\).\(\dfrac{\left(x-y\right)\left(x+y\right)}{2xy\left(x+1\right)}\)
=> A= \(\dfrac{-y}{x}\)\(\dfrac{-1}{4}\)
Dấu "=" xảy ra <=> xy=1 và x=4y <=> x=2, y=\(\dfrac{1}{2}\) <=> a =4, b=\(\dfrac{1}{4}\)

Vậy Max A =\(\dfrac{-1}{4}\) <=> a=4, b=\(\dfrac{1}{4}\)

12 tháng 10 2017

chỗ đầu mình nhầm B = \(\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(....\right)\)

28 tháng 10 2021

\(M=\dfrac{a\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\\ M=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ M=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)

\(\left(1-a\right)\left(1-b\right)+2\sqrt{ab}=1\\ \Leftrightarrow1-a-b+ab+2\sqrt{ab}=1\\ \Leftrightarrow a+b-ab-2\sqrt{ab}=0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=ab\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{a}-\sqrt{b}=\sqrt{ab}\\\sqrt{a}-\sqrt{b}=-\sqrt{ab}\end{matrix}\right.\)

Với \(\sqrt{a}-\sqrt{b}=\sqrt{ab}\Leftrightarrow M=\dfrac{\sqrt{ab}}{\sqrt{ab}}=1\)

Với \(\sqrt{a}-\sqrt{b}=-\sqrt{ab}\Leftrightarrow M=\dfrac{\sqrt{ab}}{-\sqrt{ab}}=-1\)

28 tháng 10 2021

\(M=\dfrac{a\sqrt{a}-b\sqrt{b}-a\left(\sqrt{a}-\sqrt{b}\right)+b\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)

\(\left(1-a\right)\left(1-b\right)+2\sqrt{ab}=1\)

\(\Leftrightarrow a+b-ab-2\sqrt{ab}=0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=ab\Leftrightarrow\sqrt{a}-\sqrt{b}=\sqrt{ab}\)

\(M=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}}{\sqrt{ab}}=1\)

a: \(=3\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)-3\sqrt{6}\)

=3căn 6-6-3căn 6=-6

b: \(=\dfrac{a+\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\sqrt{a}\)

\(=\dfrac{a+\sqrt{ab}-a+\sqrt{ab}}{\sqrt{a}-\sqrt{b}}=\dfrac{2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)