cho tam giác ABC, A=90 độ, B=51 độ, AB=2,8cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác abc ( a=90 độ). giải tam giác vuông abc biết a)AB =30cm , acb=30 độ b) AB=20cm ;AC=13cm
a.
Trong tam giác vuông ABC:
\(tan\widehat{ACB}=\dfrac{AB}{AC}\Rightarrow AC=AB.tan\widehat{ACB}=30.tan30^0=10\sqrt{3}\left(cm\right)\)
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=20\sqrt{3}\left(cm\right)\)
\(\widehat{ABC}=90^0-\widehat{ACB}=60^0\)
b.
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{569}\left(cm\right)\)
\(tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{13}{20}\Rightarrow\widehat{ABC}\approx33^0\)
\(\widehat{ACB}=90^0-\widehat{ABC}=57^0\)
3:
Đặt HB=x; HC=y
Theo đề, ta có: x+y=289 và xy=120^2=14400
=>x,y là các nghiệm của phương trình:
a^2-289a+14400=0
=>a=225 hoặc a=64
=>(x,y)=(225;64) và (x,y)=(64;225)
TH1: BH=225cm; CH=64cm
=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)
TH2: BH=64cm; CH=225cm
=>AB=119m; AC=255cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
ΔABC vuông tại A
=>góc B+góc C=90 độ
=>góc C=60 độ
Xét ΔABC vuông tại A có \(cosB=\dfrac{AB}{BC}\)
=>8/BC=căn 3/2
=>BC=16/căn 3(cm)
=>\(AC=\dfrac{8}{\sqrt{3}}\left(cm\right)\)
tam giác ABC vuông tại A(vì ∠A=90 độ)
vẽ AD cắt BC tại D sao cho ∠ADB=60 độ
=> tam giác ABD đều(DHNB tam giác đều)
=>BD=AB=AD=3cm
tam giác ACD cân tại C vì ∠C= ∠DAC=30 độ
=> tam giác ADC cân tại D
=>CD=AD
mà AD=3cm (cmt)
=>CD=3cm
mặt khác BC=CD+BD(cv)
=>BC=CD+BD=3+3=6
=>BC=6cm
áp dụng định lí Pytago cho tam giác ABC vuông tại A ta có
BC^2=AB^2+AC^2
=>6^2=3^2+AC^2
=>36=9+AC^2
=>AC^2=25
=>AC=5
vậy AC=5,BC=6
a: góc C<góc B
=>AB<AC
b: Xét ΔABM co AB=AM và góc A=60 độ
nên ΔAMB đều
góc C=90-51=39 độ
Xet ΔABC vuông tại A có sin C=AB/BC
=>2,8/BC=sin39
=>BC=4,45cm
=>AC=3,46(cm)