K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

Ta có:

\(2A=2+2^2+2^3+...+2^{101}\)

=>\(2A-A=\left(2+2^2+..+2^{101}\right)-\left(1+2+2^2+..+2^{100}\right)\)

=>\(A=2^{101}-1\)

\(2^{101}-1>2^{100}-1\) nên A>B

Vậy A>B

11 tháng 9 2017

Vì A có 2100 và được cộng thêm, B có 2100 phải trừ 1 nên A > B.

ngắn gọn thôi

12 tháng 1 2016

A là số dương, B là số âm => A>B

12 tháng 1 2016

A có 50 thừa số âm

=> A > 0

b) CÓ 49 thừa số âm 

=> B < 0 

13 tháng 1 2016

A<0

B>0

 

 

13 tháng 2 2018

Ta có: \(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(\Leftrightarrow A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{10}}\)

        \(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

\(\Leftrightarrow B=\frac{\left[\left(20.100+16\right)\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

Ta có hai tổng A và B mới để so sánh:

\(A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(B=\frac{\left[\left(20.100\right)+16\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

 Tới đây đơn giản rồi. Bạn làm tiếp đi nhé! Mẹ mình bắt tắt máy không cho làm nên đành dừng lại ở đây thôi! Thông cảm :V

22 tháng 10 2017

giup toi cai

22 tháng 10 2017

A = 1 + 4 + 4^2 + ... + 4^99

4A = 4 + 4^2 + 4^3 +... + 4^100

4A - A = 3A = ( 4 + 4^2 + 4^100 ) - ( 1 + 4 + 4^2 + 4^99 )

3A = 4^100 - 1

Ta thấy: 3A < B => A < B/3 ( đpcm )

k đúng nhé