K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

\(\left(\sqrt{1-x}.\dfrac{\sqrt{3}}{\sqrt{1-x}}+\sqrt{x}.\dfrac{2}{\sqrt{x}}\right)^2\le\left(1-x+x\right)\left(B\right)\)

\(\Rightarrow B\ge\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)

Bmin = 7+4can 3

khi\(\dfrac{\sqrt{3}}{1-x}=\dfrac{2}{x}\Rightarrow x=\dfrac{2}{\sqrt{3}+2}\)

2 tháng 4 2017

\(A=\dfrac{3}{1-x}+\dfrac{4}{x}=\dfrac{3}{1-x}+\dfrac{4}{x}+1-x-1+x\)

\(=\dfrac{3}{1-x}+\dfrac{4}{x}+\left(1-x\right)+\left(x-1\right)\)

Áp dụng BĐT Cô si với 4 số dương : \(\dfrac{3}{1-x};\dfrac{4}{x};1-x;x>0\)

Ta có : \(\dfrac{\dfrac{3}{1-x}+\dfrac{4}{x}+1-x+x}{4}\ge\sqrt[4]{\dfrac{3}{1-x}+\dfrac{4}{x}+1-x+x}\)

\(\Leftrightarrow\dfrac{3}{1-x}+\dfrac{4}{x}+1-x+x\ge4\sqrt[4]{\dfrac{3}{1-x}+\dfrac{4}{x}+1-x+x}\)

Dấu "=" xảy ra khi và chỉ khi \(\dfrac{3}{1-x}=\dfrac{4}{x}=1-x=1\)

Vậy.....

Cậu coi thử đúng không chứ mình mới học BĐT cách đây 2 tiếng thôi nên không biết đúng hay sai .

Thông cảm !

14 tháng 12 2018

Áp dụng BĐT Cauchy schwarz dưới dạng en-gel ta có :

\(B=\dfrac{4}{x}+\dfrac{9}{1-x}\ge\dfrac{\left(2+3\right)^2}{x+1-x}=25\)

Dấu \("="\)xảy ra khi \(\dfrac{2}{x}=\dfrac{3}{1-x}\Leftrightarrow x=\dfrac{2}{5}\)

NV
7 tháng 12 2018

\(P=\dfrac{4}{x}+1+\dfrac{9}{1-x}=\dfrac{4}{x}+25x+25\left(1-x\right)+\dfrac{9}{1-x}-24\)

\(\Rightarrow P\ge2\sqrt{\dfrac{4}{x}.25x}+2\sqrt{25\left(1-x\right).\dfrac{9}{1-x}}-24\)

\(\Rightarrow P\ge20+30-24=26\)

\(\Rightarrow P_{min}=26\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{4}{x}=25x\\25\left(1-x\right)=\dfrac{9}{1-x}\end{matrix}\right.\) \(\Rightarrow x=\dfrac{2}{5}\)

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

21 tháng 7 2018

# Bài 1

* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương

* Với \(x,y>0\) áp dụng (1) ta có

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)

\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)

* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)

Áp dụng (2) với x , y > 0 ta có

\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)

* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)

\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)

Dấu "=" xra khi \(x=y=4\)

Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)

27 tháng 1 2018

Bài 1:

ta có: C=\(\dfrac{x}{1-x}+\dfrac{5}{x}=\dfrac{x}{1-x}+\dfrac{5-5x+5x}{x}=\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}+\dfrac{5x}{x}=\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}+5\)

Vì 0<x<1==> \(\dfrac{x}{1-x}>0,\dfrac{5.\left(1-x\right)}{x}>0\)

Asp dụng BĐT coossi cho 2 số dg ta đc

\(\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}>=2.\sqrt{\dfrac{x}{1-x}.\dfrac{5.\left(1-x\right)}{x}}\)=2\(\sqrt{5}\)

==> C >= 2\(\sqrt{5}+5\)

Dấu ''='' xảy ra <=>\(\dfrac{x}{1-x}=\dfrac{5.\left(1-x\right)}{x}< =>x^{2^{ }}=5.\left(1-x\right)^2\)

<=> x=\(\dfrac{5-\sqrt{5}}{4}\)

Vậy..............

27 tháng 1 2018

bài 2 :

ta có A= -x+2.\(\sqrt{\left(x-3\right).\left(1-2x\right)}\)

= [ (x-3) + 2\(\sqrt{\left(x-3\right).\left(1-2x\right)}\)+( 1-2x)] +2

= ( \(\sqrt{x-3}+\sqrt{1-2x}\))2+2

Nhận thấy( \(\sqrt{x-3}+\sqrt{1-2x}\))2>= 0

==> A >= 2

dấu ''='' xáy ra <=>( \(\sqrt{x-3}+\sqrt{1-2x}\))2=0

<=> \([^{x=3}_{x=\dfrac{1}{2}}\)

vậy..............

5 tháng 6 2018

\(P=\dfrac{1}{2\left(x^2+y^2\right)}+\dfrac{4}{xy}+2xy\)

\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{8}{xy}+4xy\)

\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\)

Áp dụng BĐT AM - GM , ta có :

\(\Leftrightarrow\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\ge\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{29}{4xy}\)

\(\Leftrightarrow2P\ge\)\(\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2+\dfrac{29}{4xy}\ge\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{29}{\left(x+y\right)^2}\)

\(\Leftrightarrow2P\ge2+4+29=35\)

\(\Leftrightarrow P\ge\dfrac{35}{2}\)

\(\Rightarrow P_{Min}=\dfrac{35}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)