K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Do : b + 1 = a --> a - b = 1

Ta có : ( a + b)( a2 + b2)( a4 + b4)( a8 + b8)( a16 + b16)

= 1.( a + b)( a2 + b2)( a4 + b4)( a8 + b8)( a16 + b16)

= ( a - b)( a + b)( a2 + b2)( a4 + b4)( a8 + b8)( a16 + b16)

= ( a2 - b2)( a2 + b2)( a4 + b4)( a8 + b8)( a16 + b16)

= ( a4 - b4)( a4 + b4)( a8 + b8)( a16 + b16)

= ( a8 - b8)( a8 + b8)( a16 + b16)

= ( a16 - b16)( a16 + b16)

= a32 - b32 ( đpcm)

23 tháng 10 2017

lozzzzzzzzzzzzzzzzzzzzzzzzzzz

25 tháng 5 2021

a)Xét \(\left(\dfrac{a+b}{2}\right)^2-\dfrac{a^2+b^2}{2}=\)\(\dfrac{a^2+2ab+b^2-2\left(a^2+b^2\right)}{4}\)\(=\dfrac{-a^2+2ab-b^2}{4}\)\(=\dfrac{-\left(a-b\right)^2}{4}\le0\forall a;b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\) (bạn ghi sai đề?) 

Dấu = xảy ra <=> a=b

b) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)\)

\(=a^{12}+a^{10}b^2+a^2b^{10}+b^{12}-\left(a^{12}+a^8b^4+a^4b^8+b^{12}\right)\)

\(=a^2b^2\left(a^8+b^8-a^6b^2-a^2b^6\right)\)

\(=a^2b^2\left(a^2-b^2\right)\left(a^6-b^6\right)=a^2b^2\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) với mọi a,b

=> \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)

Dấu = xảy ra <=>a=b

 

các bạn giúp mik với (giúp đc nhiều thì giúp mai nộp rồi)Bài 1.Tính:a) (a2- 4)(a2+4)                            b) (a-b+c)(a+b+c)               g)  (a – 5)(a2 + 10a + 25)c) (a-b)(a+b)(a2+b2)(a4+b4)        d) (3x+y-2)2                        h) (x2- 4x + 16)(x+4)e) (22 - 1)(22 +1)(24 + 1)(28 + 1)   f) (x+y)3 - (x-y)3              k) Bài 2: Tìm x biết: a) (2x + 1)2 - 4(x + 2)2 = 9;        b) (x -2)2 – (x +3)2 = 45c) (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1;                  d) (x +...
Đọc tiếp

các bạn giúp mik với (giúp đc nhiều thì giúp mai nộp rồi)

Bài 1.Tính:

a) (a2- 4)(a2+4)                            b) (a-b+c)(a+b+c)               g)  (a – 5)(a2 + 10a + 25)c) (a-b)(a+b)(a2+b2)(a4+b4)        d) (3x+y-2)2                        h) (x2- 4x + 16)(x+4)

e) (22 - 1)(22 +1)(24 + 1)(28 + 1)   f) (x+y)3 - (x-y)3              k)

Bài 2: Tìm x biết:

a) (2x + 1)2 - 4(x + 2)2 = 9;        

b) (x -2)2 – (x +3)2 = 45

c) (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1;                  

d) (x + 1)3 - (x - 1)3 - 6(x - 1)2 = -10

Bài 3.Biết số tự nhiên x chia cho 7 dư 6.CMR:x2 chia cho 7 dư 1

Bài 4. So sánh:

a) A = 1997 . 1999 và B = 19982

b)A = 4(32 + 1)(34 + 1)…(364 + 1) và B = 3128 - 1

Bài 5: Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau ở G . gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE // IK, DE = IK

Bài 6: Cho tam giác ABC. Trên cạnh AB lấy hai điểm M, N sao cho AM = MN = NB. Từ M và N kẻ các đường thẳng song song với BC, chúng cắt AC tại E và F. Tính độ dài các đoạn thẳng NF và BC biết ME = 5cm.

Bài 7: Cho D ABC có BC =4cm, các trung tuyến BD, CE. Gọi M,N theo thứ tự là trung điểm của BE,CD. Gọi giao điểm của MN với BD,CE theo thứ tự là P, Q

a) Tính MN                        b) CMR: MP =PQ =QN

Bài 8: Cho hình thang ABCD (AB // CD) các tia phân giác góc ngoài đỉnh A và D cắt nhau tại H. Tia phan giác góc ngoài đỉnh B và C cắt nhau ở K. CMR:

a)     AH ^ DH ; BK ^ CK

b)    HK // DC

c)     Tính độ dài HK biết AB = a ; CD = b ; AD = c ; BC = dBài 1.Tính:

 

3
7 tháng 10 2021

\(a,=a^8-16\\ b,\left(a+c\right)^2-b^2=a^2+2ac+c^2-b^2\\ c,=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\\ =\left(a^4-b^4\right)\left(a^4+b^4\right)=a^8-b^8\\ d,=\left[\left(3x+y\right)-2\right]^2=\left(3x+y\right)^2-4\left(3x+y\right)+4\\ =9x^2+6xy+y^2-12x-4y+4\\ h,=x^3+64\\ e,=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1=...\\ f,=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\\ =2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\)

7 tháng 10 2021

e đăng đừng Ctrl+V nhiều quá lóe mắt :vv

(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2

(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

(a+3)^3=(a+b)^2*(a+b)

=(a^2+2ab+b^2)(a+b)

=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3

=a^3+3a^2b+3ab^2+b^3

a: \(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)

hay \(\left(a-1\right)^2>=0\)(luôn đúng)

b: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)=VP\)

6 tháng 1 2022

Cảm ơn  chị rất nhiều

24 tháng 1 2019

a) Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

( v ì   a   +   b   >   0   n ê n   | a   +   b |   =   a   +   b ;   b 2   >   0 )

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm