a, 4n - 7 ⋮ 5n + 3
b, 11n - 7 ⋮ 2n - 3
giúp mình nhé mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)
⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)
⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)
Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:
2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)
Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)
a: \(\Leftrightarrow5\left(4n-7\right)⋮5n+3\)
\(\Leftrightarrow20n-35⋮5n+3\)
\(\Leftrightarrow20n+12-47⋮5n+3\)
\(\Leftrightarrow5n+3\in\left\{1;-1;47;-47\right\}\)
hay \(n\in\left\{-\dfrac{2}{5};-\dfrac{4}{5};\dfrac{44}{5};-10\right\}\)
b: \(\Leftrightarrow22n-14⋮2n-3\)
\(\Leftrightarrow22n-33+19⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{2;1;11;-8\right\}\)
Gọi d là ucln của 4n+7 và 2n+4
Ta có 4n+7 chia hết cho d
2n+4 chia hết cho d
=> 4n+7 chia hết cho d
2(2n+4) chia hết cho d
=> 4n+7 chia hết cho d
4n+8 chia hết cho d
=> (4n+8)-(4n+7) chia hết cho d
=> 1 chia hết cho d
=> d thược u(1)
=> d=1
Vậy ucln của 4n+7 và 2n+4 là 1
Gọi \(d\inƯC\left(4n+7,2n+4\right)\) vs \(d\inℕ^∗\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2n+4⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow4n+8-\left(4n+7\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\RightarrowƯCLN\left(4n+7,2n+4\right)=1\)
Bài 1 :
a) Ta có :
\(4n-7=4n+12-19=4.\left(n+3\right)-19\)
Ta thấy \(4.\left(n+3\right)⋮n+3\Rightarrow\left(-19\right)⋮n+3\Rightarrow\left(n+3\right)\inƯ\left(-19\right)\)
\(Ư\left(-19\right)=\left\{1;-1;19;-19\right\}\)
Do đó :
\(n+3=1\Rightarrow n=1-3=-2\)
\(n+3=-1\Rightarrow n=-1-3=-4\)
\(n+3=19\Rightarrow n=19-3=16\)
\(n+3=-19\Rightarrow n=-19-3=-22\)
Vậy \(n\in\left\{-2;-4;16;-22\right\}\)
BÀI 2:
a chia 8 dư 7 \(\Rightarrow\)\(a-7\)\(⋮\)\(8\)\(\Rightarrow\)\(a-7+128\)\(⋮\)\(8\)\(\Rightarrow\)\(a+121\)\(⋮\)\(8\)
a chia 125 dư 4 \(\Rightarrow\)\(a-4\)\(⋮\)\(125\)\(\Rightarrow\)\(a-4+125\)\(⋮\)\(125\)\(\Rightarrow\)\(a+121\) \(⋮\)\(125\)
suy ra: \(a+121\)\(\in BC\left(8;125\right)=B\left(1024\right)=\left\{0;1024;2048;3072;...\right\}\)
\(\Rightarrow\)\(a\)\(\in\left\{903;1927;....\right\}\)
mà \(100< a< 1000\)
\(\Rightarrow\)\(a=903\)