Cho biểu thức \(P=\dfrac{2a+b}{3a-b}.\) Với a > b > 0 và \(2\left(a^2+b^2\right)=5ab\) thì P =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-ab-4ab+2b^2=0\)
\(\Leftrightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)
Vì a>b>0 nên 2a>b
\(\Rightarrow a=2b\)
Thay vào P ta có
\(P=\frac{2.2b+b}{3.2b-b}=\frac{5b}{5b}=1\)
Bài này theo mình nên chọn phương án phân tích ĐTTNT từ điều kiện đầu tiên!
2a² + 2b² = 5ab
<=> 2a² - 5ab + 2b² = 0
<=> 2a² - 4ab - ab + 2b² = 0
<=> 2a(a - 2b) - b(a - 2b) = 0
<=> (a - 2b)(2a - b) = 0
<=> [a = 2b
.......[ a = b/2 (Loại vì a > b)
Thay a = 2b vào biểu thức ta có:
. .2b + b . . .. 3b
------------ = ---------- = 3
. .2b - b . . . . b
Từ \(2\left(a^2+b^2\right)=5ab\)\(\Rightarrow2a^2+2b^2-5ab=0\)
\(\Rightarrow2b^2-ab-4ab+2a^2=0\)
\(\Rightarrow b\left(2b-a\right)-2a\left(2b-a\right)=0\)
\(\Rightarrow\left(b-2a\right)\left(2b-a\right)=0\)
\(\Rightarrow\orbr{\begin{cases}b-2a=0\\2b-a=0\end{cases}}\Rightarrow\orbr{\begin{cases}b=2a\\a=2b\end{cases}}\Rightarrow\orbr{\begin{cases}a=\frac{b}{2}\\b=\frac{a}{2}\end{cases}}\)
- Với \(b=2a\Rightarrow P=\frac{3a-b}{2a+b}=\frac{\frac{3b}{2}-b}{\frac{2b}{2}+b}=\frac{\frac{3b}{2}-\frac{2b}{2}}{\frac{2b}{2}+\frac{2b}{2}}=\frac{\frac{b}{2}}{\frac{4b}{2}}=\frac{1}{4}\)
- Với \(b=2a\Rightarrow P=\frac{3a-b}{2a+b}=\frac{3a-\frac{a}{2}}{2a+\frac{a}{2}}=\frac{\frac{6a}{2}-\frac{a}{2}}{\frac{4a}{2}+\frac{a}{2}}=\frac{\frac{5a}{2}}{\frac{5a}{2}}=1\)
từ giả thiết chuyển vế phân tích thành nhân tử ta đc (a-b)(2a-b)=0=>a=2b(do a>b>0)=.P=1
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0
Bài 1:
a^2-5ab-6b^2=0
=>a^2-6ab+ab-6b^2=0
=>a*(a-6b)+b(a-6b)=0
=>(a-6b)(a+b)=0
=>a=-b hoặc a=6b
TH1: a=-b
\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)
TH2: a=6b
\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)
Ta có : \(2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow a=2b\) ( vì \(a>b>0\) )
Thay vào viểu thức P, ta có :
\(P=\dfrac{2.2b+b}{3.2b-b}=1\)