Số nghiệm nguyên của bất phương trình là:
Select one:
A. 4
B. 1
C. 3
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`3.2^x-4^{x-1}-8=0`
`<=>4^{x-1}-3.2^x+8=0`
`<=>1/4*4^x-3.2^x+8=0`
`<=>4^x-12.2^x+32=0`
`<=>(2^x)^2-12.2^x+32=0`
Đặt `t=2^x`
`pt<=>t^2-12t+32=0`
`<=>(t-4)(t-8)=0`
`<=>[(t=4),(t=8):}`
`=>[(x=2),(x=3):}=>|x_1-x_2|=|2-3|=1`
Đặt \(5^x=t>0\)
\(\Rightarrow t^2-6t+5=0\Rightarrow\left[{}\begin{matrix}t=1\\t=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5^x=1\\5^x=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) \(\Rightarrow0+1=1\)
Ta có
\(\begin{array}{l}\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \left( {\frac{\pi }{4}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4}{\rm{ }} = {\rm{ }}\frac{\pi }{4} + k2\pi ;k \in Z\\x + \frac{\pi }{4}{\rm{ }} = {\rm{ }}\pi {\rm{ - }}\frac{\pi }{4} + k2\pi ;k \in Z\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = {\rm{ }}k2\pi ;k \in Z\\x{\rm{ }} = {\rm{ }}\frac{\pi }{2} + k2\pi ;k \in Z\end{array} \right.\end{array}\)
Mà \(x \in \left[ {0;\pi } \right]\) nên \(x \in \left\{ {0;\frac{\pi }{2}} \right\}\)
Vậy phương trình đã cho có số nghiệm là 2.
Chọn C
Giá trị x = 2 là nghiệm của bất phương trình nào trong các bất phương trình nào dưới đây ?
A. 3x + 3 > 9 |
B. - 5x > 4x + 1 |
C. x - 6 > 5 - x |
D. x - 2x < - 2x + 4 |
=>2cos2x=pi(loại) hoặc sin x-cosx=0
=>sin x-cosx=0
=>sin(x-pi/4)=0
=>x-pi/4=kpi
=>x=kpi+pi/4
mà x\(\in\left[-pi;pi\right]\)
nên \(x\in\left\{\dfrac{pi}{4};-\dfrac{3}{4}pi\right\}\)
=> D
`2^x+8.2^{-x}<=9`
`<=>2^x+8.(2^x)^{-1}<=9`
`<=>2^x+8/(2^x)<=9`
`<=>4^x+8<=9.2^x`
`<=>(2^x)^2-9.2x^2+8<=0`
Đặt `t=2^x`
`pt<=>t^2-9t+8<=0`
`<=>(t-1)(t-8)<=0`
`<=>1<=t<=8`
`<=>1<=2^x<=8=>x in {1;2;3}`
`=>` Chọn C.3
Không biết làm thì đừng có trả lời bừa nhé bạn.