giúp mình này nhé
cảm ơn các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Quá khứ tiếp diễn
-Form: S+was/were+V-ing+........
-Signal(trong đề): At this time, while
2, Used to V(infinitive): Đã thường từng
3, -Có dấu hiệu của Thì Hiện Tại Tiếp diễn: Be quiet!
-Form: S+is/am/are+V-ing+..............
4, Because of+ V-ing/N, Mệnh đề
5, Đại từ quan hệ whose thay thế cho tính từ sở hữu
6, Make a lot of: Tạo rất nhiều sự nỗ lực
7, Surprise at: Ngạc nhiên với
8, Ask+O+to V: yêu cầu ai đó làm gì
9, A little đi với N không đếm được
10, in*sửa hộ mình nhé*
In đi với trạng từ chỉ thế kỉ
4: \(D=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(A=\left(x^2-6x+9\right)-7=\left(x-3\right)^2-7\ge7\\ A_{min}=7\Leftrightarrow x=3\\ B=\left(9x^2+6x+1\right)-4=\left(3x+1\right)^2-4\ge-4\\ B_{min}=-4\Leftrightarrow x=-\dfrac{1}{3}\\ C=\left(x^2-2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\\ C_{min}=-\dfrac{9}{4}\Leftrightarrow x=\dfrac{5}{2}\\ D=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ D_{min}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(E=3\left(x^2+2\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x+\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\\ E_{min}=-\dfrac{4}{3}\Leftrightarrow x=-\dfrac{1}{3}\\ F=x^2-2x+1+x^2-4x+4+2021\\ F=2\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{4031}{2}=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{4031}{2}\ge\dfrac{4031}{2}\\ F_{min}=\dfrac{4031}{2}\Leftrightarrow x=\dfrac{3}{2}\)
a) Ta có: MN⊥d, EF⊥d
=> MN//EF(từ vuông góc đến song song)
b) Ta có: \(\widehat{MPQ}=180^0-\widehat{MPb}=180^0-55^0=125^0\)(kề bù)
\(\Rightarrow\widehat{MPQ}=\widehat{NMc}=125^0\)
Mà 2 góc này đồng vị
=> PQ//MN
Mà MN//EF
=> PQ//EF
Cảm ơn bạn. Bạn có thể giúp mình làm nốt câu c được không?
\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{a}-\sqrt{b}\right)>=0\)(đúng)