K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)

\(\Rightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)-24=0\)

\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Rightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24=0\)

\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(x^2+5x+4=t\Rightarrow x^2+5x+6=t+2\) ta được:

\(t\left(t+2\right)-24=0\Rightarrow t^2+2t-24=0\)

\(\Rightarrow t^2-4t+6t-24=0\Rightarrow\left(t-4\right)\left(t-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t-4=0\\t-6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}t=4\\t=6\end{matrix}\right.\)

\(t=x^2+5x+4\) nên

\(\left[{}\begin{matrix}x^2+5x+4=4\\x^2+5x+6=6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\left(x+5\right)=0\\x\left(x+5\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy................

Chúc bạn học tốt!!!

7 tháng 12 2018

sai rồi bạn, chỗ \(t^2+2t-24\) phải là (t-4)(t+6) mới đúng chứ

29 tháng 12 2017

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2=25\)

Mà \(x^2+5x+5>0\forall x\)

\(\Rightarrow x^2+5x+5=5\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy pt có tập nghiệm S={0,-5}

29 tháng 12 2017

pt <=> (x+1).(x+2).(x+3).(x+4) = 24

<=> [(x+1).(x+4)].[(x+2).(x+3)] = 24

<=> (x^2+5x+4).(x^2+5x+6) = 24

<=> (x^2+5x+5)^2-1 = 24

<=> (x^2+5x+5) = 25

=> x^2+5x+5 = 5 [ vì x^2+5x+5 = (x+2,5)^2-0,25 >= -0,25 > -5 ]

=> x=0 hoặc x=-5 

Vậy pt có tập nghiệm S = {-5;0}

k mk nha

3 tháng 5 2017

         \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)

\(\Leftrightarrow\frac{\frac{5x+6-2x}{5}}{14}-\frac{x+4}{24}=\frac{\frac{35x+10+9-3x}{5}}{12}+\frac{2}{3}\)

\(\Leftrightarrow\frac{\frac{3x+6}{5}}{14}-\frac{x+4}{24}=\frac{\frac{32x+19}{5}}{12}+\frac{2}{3}\)

\(\Leftrightarrow\left(\frac{3x+6}{5}\cdot\frac{1}{14}\right)-\frac{x+4}{24}=\left(\frac{32x+19}{5}\cdot\frac{1}{12}\right)+\frac{2}{3}\)(CHIA CHO 14 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/14,)                                                                                                                           (CHIA CHO 12 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/12)\(\Leftrightarrow\frac{3x+6}{70}-\frac{x+4}{24}-\frac{32x+19}{60}-\frac{2}{3}=0\)\(\Leftrightarrow\frac{12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-2\cdot280}{840}=0\)

 \(\Leftrightarrow12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-560=0\)

\(\Leftrightarrow36x+72-35x-140-448x-266-560=0\)

 \(\Leftrightarrow-447x-894=0\Leftrightarrow x=\frac{-894}{447}=-2\)(NHẬN)

 Vậy tập nghiệm của phương trình là : S = { -2 }

tk cho mk nka ! ! ! th@nks ! ! !

[Lớp 8]Bài 1. Giải phương trình sau đây:a) \(7x+1=21;\)b) \(\left(4x-10\right)\left(24+5x\right)=0;\)c) \(\left|x-2\right|=2x-3;\)d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\) Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\) Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\) Bài 4. Giải bài...
Đọc tiếp

undefined

[Lớp 8]

Bài 1. Giải phương trình sau đây:

a) \(7x+1=21;\)

b) \(\left(4x-10\right)\left(24+5x\right)=0;\)

c) \(\left|x-2\right|=2x-3;\)

d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)

 

Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:

                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)

 

Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)

 

Bài 4. Giải bài toán bằng cách lập phương trình:

Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. 

Tính quãng đường AB.

 

Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.

a) Chứng minh: ΔHAC đồng dạng với ΔABC;

b) Chứng minh AH2=AD.AB;

c) Chứng minh AD.AB=AE.AC;

d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)

9
26 tháng 3 2021

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

21 tháng 1 2022

1, <=> 3x-1-2x=6 <=> x =7 

2, (2x-1)(7-x)=x^2-7x

<=> 14x -2x^2-7+x=x^2-7x

<=> -3x^2+ 15x - 7 = -7x 

<=> -3x^2 +23x - 7 =0

<=> \(x=\dfrac{23\pm\sqrt{445}}{6}\)

NV
21 tháng 1 2022

1.

\(\Leftrightarrow3x-1-2x=6\)

\(\Leftrightarrow x-1=6\)

\(\Leftrightarrow x=7\)

2.

\(\Leftrightarrow\left(2x-1\right)\left(7-x\right)+7x-x^2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(7-x\right)+x\left(7-x\right)=0\)

\(\Leftrightarrow\left(7-x\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7-x=0\\3x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{1}{3}\end{matrix}\right.\)

15 tháng 6 2018

\(\left(x^2+7x+12\right).\left(4x-16\right)-\left(x+3\right)\left(x^2-5x+4\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^2+3x+4x+12\right).4.\left(x-4\right)-\left(x+3\right)\left(x^2-x-4x+4\right)\left(x-4\right)=0\)

\(\Leftrightarrow4\left(x+4\right)\left(x+3\right)\left(x-4\right)-\left(x+3\right)\left(x-4\right)\left(x+4\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-4\right)\left(x+3\right)\left(4-x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-4\right)\left(x+3\right)\left(8-x\right)=0\)

\(\Leftrightarrow\frac{\orbr{\begin{cases}x+4=0\\x-4=0\end{cases}}}{\orbr{\begin{cases}x+3=0\\8-x=0\end{cases}}}\Leftrightarrow\frac{\orbr{\begin{cases}x=-4\\x=4\end{cases}}}{\orbr{\begin{cases}x=-3\\x=8\end{cases}}}\)

19 tháng 3 2020

Bạn bạn nhân phân phối (3x-1)(x-2) và (3x-1)(7x-10)   

Sau đó chuyển vế sao cho về phương trình bậc 2 

Sau đó giải pt bậc hai là ra

19 tháng 3 2020

Ta có : (3x -1 ) . ( x + 2 ) = ( 3x-1 ) .( 7x - 10)

     <=>3.x2 + 6x -x -2    = 21x2 -30x - 7x +10

    <=> 3x2 + 5x -2           = 21x2 -37x + 10

   <=> 3x2 +5x - 3 - 21x2 +37x -10 = 0

    <=> -18x2 + 42x -12                  = 0

    <=> 3x2 -7x +2                           = 0

   <=> 3x2 -x -6x + 2                    = 0

    <=> x. ( 3x -1 ) -2.(3x -1 )       = 0

    <=> (3x -1 ) . ( x - 2 )               = 0

   <=> \(\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)

Tập nghiệm của phương trình là : { \(\frac{1}{3}\); 2}

31 tháng 10 2016

Bạn ơi , mình cho bạn ví dụ và hướng dẫn cách làm nha 

f(x)=3x3 – 7x2 + 17x–5f(x)

Hướng dẫn:
±1,±5±1,±5 không là nghiệm của f(x)f(x), như vậy f(x)f(x) không  có nghiệm nguyên. Nên f(x)f(x) nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy x=x= 1313 là nghiệm của f(x)f(x) do đó f(x)f(x) có một nhân tử là  3x–13x–1. Nên
f(x)= 3x– 7x2 + 17x – 5 = 3x3− x2− 6x2 + 2x + 15x − 5f(x)

= 3x3 – 7x2 + 17x – 5 = 3x3 − x2 − 6x2 + 2x + 15x − 5

= (3x3−x2 ) − ( 6x2 −2x ) + (15x−5) = (3x3 − x2) − (6x2 − 2x) + (15x−5)
= x2 ( 3x−1 )− 2x(3x−1) + 5(3x−1) = (3x − 1)(x2 − 2x + 5 )
Vì x2 − 2x + 5 = (x2 − 2x + 1) + 4 = (x−1)2 + 4>0x2 − 2x + 5= (x2 − 2x + 1) + 4= (x−1)2 + 4>0 với mọi xx nên không phân tích được thành nhân tử nữa
 

31 tháng 10 2016

ình muốn giúp lắm nhưng mình......chưa học.mình mới học lớp 7