K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

\(1-2sin^2x.cos^2x+\dfrac{1}{2}cos^22x=0\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}cos^22x=0\)

\(\Leftrightarrow1+\dfrac{1}{2}cos4x=0\)

\(\Leftrightarrow cos4x=-2\)

\(\Rightarrow\) phương trình vô nghiệm.

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
PT $\Leftrightarrow 2-4\sin ^2x\cos ^2x+\cos ^22x=0$

$\Leftrightarrow 2-(\sin 2x)^2+\cos ^22x=0$

$\Leftrightarrow 2+\cos 4x=0$

$\Leftrightarrow \cos 4x=-2< -1$ (vô lý)

Vậy pt vô nghiệm

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

a)

\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)

b)

\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)

\(=1-2\sin ^2x\cos ^2x\)

c)

\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)

\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)

\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

d)

\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)

\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)

\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)

\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)

\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)

e)

\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)

\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)

\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)

\(=1+2\sin x\cos x\)

-------------

P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)

1: \(\Leftrightarrow4\cdot\dfrac{1+\cos2x}{2}-6\cdot\dfrac{1-\cos2x}{2}+5\sin2x-4=0\)

\(\Leftrightarrow2+2\cos2x-3+3\cos2x+5\sin2x-4=0\)

\(\Leftrightarrow5\sin2x+5\cos2x=5\)

\(\Leftrightarrow\cos2x+\sin2x=1\)

\(\Leftrightarrow\sqrt{2}\cdot\sin\left(2x+\dfrac{\Pi}{4}\right)=1\)

\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{4}=\dfrac{\Pi}{4}+k2\Pi\\2x+\dfrac{\Pi}{4}=\dfrac{3\Pi}{4}+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)

2: \(\Leftrightarrow\sqrt{3}\cdot\dfrac{1+\cos2x}{2}+\sin2x-\sqrt{3}\cdot\dfrac{1-\cos2x}{2}-1=0\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\cos2x+\sin2x+\sqrt{3}\cdot\dfrac{\cos2x-1}{2}-1=0\)

\(\Leftrightarrow\sin2x+\dfrac{\sqrt{3}}{2}\cos2x+\dfrac{\sqrt{3}}{2}\cos2x-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}-2}{2}=0\)

\(\Leftrightarrow\sin2x+\sqrt{3}\cos2x=\dfrac{\sqrt{3}-\sqrt{3}+2}{2}=1\)

\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{3}=\dfrac{\Pi}{6}+k2\Pi\\2x+\dfrac{\Pi}{3}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{12}\Pi+k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)

6 tháng 8 2021

\(M=sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)

\(=sinx.cosx+\dfrac{sin^2x}{\dfrac{cosx+sinx}{sinx}}+\dfrac{cos^2x}{\dfrac{cosx+sinx}{cosx}}\)

\(=sinx.cosx+\dfrac{sin^3x+cos^3x}{cosx+sinx}\)

\(=sinx.cosx+\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{cosx+sinx}\)

\(=sinx.cosx+sin^2x+cos^2x-sinx.cosx\)

\(=sin^2x+cos^2x=1\)

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)