B1. ko sử dụng máy tính, rút gọn
\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)
\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
B2.
\(G=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
so sánh G với 1
B3. giải pt
\(\left\{{}\begin{matrix}\left(x-3\right)\left(2y+5\right)=\left(2x+7\right)\left(y-1\right)\\\left(4x+1\right)\left(3y-6\right)=\left(6x-1\right)\left(2y+3\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
Bài 1:
\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}.4\sqrt{3}-\sqrt{3}+5.\dfrac{2\sqrt{3}}{3}=2\sqrt{3}-\sqrt{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{3\sqrt{3}+10\sqrt{3}}{3}=\dfrac{13\sqrt{3}}{3}\)
\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{9-5}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{9-5}}=\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}=-\sqrt{5}\)
\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}=\sqrt{\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}+\sqrt{\left(\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}\right)^2}-\sqrt{2}=\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}+\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}\)
Bài 2:
Ta có: G-1
\(=\dfrac{\sqrt{x}-x+\sqrt{x}-1}{x-\sqrt{x}+1}\)
\(=\dfrac{-\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=\dfrac{-\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le0\forall x\) thỏa mãn ĐKXĐ
hay \(G\le1\)