K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

Số a =1111....11 (2017 chữ số 1) có tổng các chữ số :2017.1=2017

Vì 2017 chia 3 dư 1 nên a chia 3 dư 1

=>a=3k+1 \(\left(k\in N\right)\)

Số b=2222...22 (2018 chữ số 2)có tổng các chữ số 2018.2=4036

Vì 4036 chia 3 dư 1 nên b chia 3 dư 1

=>b=3q+1\(\left(q\in N\right)\)

Xét tích ab=(3k+1)(3q+1)=9qk+3q+3k+1

=3(3qk+q+k)+1

Vì 3(3qk+q+k) chia hết 3

=>3(3qk+q+k)+1 chia 3 dư 1

Vậy ab chia 3 dư 1

11 tháng 8 2020

a = 11111...111(2n chứ số 1) = \(\frac{10^{2n}-1}{9}\)

b = 22222...222(n chữ số 2) = \(\frac{2\left(10^n-1\right)}{9}\)

a - b = \(\frac{10^{2n}-1}{9}-\frac{2.10^n-2}{9}=\frac{10^{2n}-1-2.10^n+2}{9}\)

\(=\frac{10^{2n}-2.10^n+1}{9}=\frac{\left(10^n-1\right)^2}{3^2}=\left(\frac{10^n-1}{3}\right)^2\)là số chính phương

=> đpcm

11 tháng 8 2020

Ta có :

b = 22222...22222 ( n chữ số 2 ) = 2m

a = 11111...111 ( 2n chữ số 1 ) = 10n . 11111...111 ( n chữ số ) + 11...1111 ( n chữ số )

\(=\left(9m+1\right)m+m=9m^2+2m\) 

Lấy vế a trừ vế b ta được  \(9m^2+2m-2m=9m^2=\left(3a\right)^2\) là SCP 

=> Đpcm

3 tháng 3 2016

Tổng các chữ số của số A là :

                                   (30 + 1) * 30 : 2 = 465 

A chia 9 dư là :

                                   465 : 9 = 51 (dư 6)

                                                         Đáp số : dư 6

Nhớ k cho mình nhé . Ai k cho mình ,mình k lại cho

19 tháng 12 2018

bài này có trong đề thi cuối học kì 1 ko ???????

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

26 tháng 11 2019

Dễ thấy mọi số mũ đều có dạng 4k+1

\(A=1^1+2^5+3^9+4^{13}+.....+504^{2013}+505^{2017}\)

\(=\overline{.....1}+\overline{....2}+\overline{.....3}+.....+\overline{......5}\)

Chia tổng A thành 50 nhóm và thừa 5 số hạng cuối

Chữ số tận cùng của 50 là 

50=10*5 có chứa thừa số 10

nên cstc của 50 nhóm là 0

cstc của 5 số hạng cuối là 5

=> A có tận cùng là 5

Nguồn:Shitbo

26 tháng 11 2019

a khi chia cho 17 dư 11 suy ra a có dạng \(17p+11\)

\(\Rightarrow a+74=17p+85⋮17\)

a khi chia cho 23 dư 18 suy ra a có dạng 

\(23q+18\Rightarrow a+74=23q+92⋮23\)

a khi chia cho 11 dư 3 suy ra a có dạng 

\(11r+3\Rightarrow a+74=11r+77⋮11\)

\(\Rightarrow a+74\in BC\left(17;23;11\right)\)

\(\Rightarrow a+74=4301k\)

\(\Rightarrow a+74-4301=4301k-4301\)

\(\Rightarrow a-4227=4301\left(k-1\right)\Rightarrow a=4301\left(k-1\right)+4227\) dư 4327

27 tháng 10 2019

Câu hỏi của H - Toán lớp 8 - Học toán với OnlineMath

7 tháng 10 2019

Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 ( Đpcm)