K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

Những hằng đẳng thức đáng nhớ

Tham khảo nhé Nguyễn Thị Hồng Nhung

\(A=9x^2-6xy+2y^2+1\)

Đề thiếu gì ko vậy

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

$A=(9x^2+6xy+y^2)+y^2-6x+4y+17$

$=(3x+y)^2-2(3x+y)+y^2+6y+17$

$=(3x+y)^2-2(3x+y)+1+(y^2+6y+9)+7$

$=(3x+y-1)^2+(y+3)^2+7\geq 0+0+7=7$

Vậy GTNN của biểu thức là $7$. Giá trị này đạt được khi $3x+y-1=y+3=0$

$\Leftrightarrow y=-3; x=\frac{4}{3}$

$A$ không có max bạn nhé.

11 tháng 8 2016

\(A=9x^2+2y^2+6xy-6x+11\)

=> \(A=9x^2+6x\left(y-1\right)+2y^2+11\)

=> \(A=\left(3x\right)^2+2.3x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+2y^2+11\)

=> \(A=\left(3x+y-1\right)^2-\left(y^2-2y+1\right)+2y^2+11\)

=> \(A=\left(3x+y-1\right)^2-y^2+2y-1+2y^2+11\)

=> \(A=\left(3x+y-1\right)^2+y^2+2y+1+9\)

=> \(A=\left(3x+y-1\right)^2+\left(y+1\right)^2+9\)

Có \(\left(3x+y-1\right)^2\ge0\)với mọi x; y

\(\left(y+1\right)^2\ge0\)với mọi y

=> \(\left(3x+y-1\right)^2+\left(y+1\right)^2+9\ge9\)với mọi x; y

=> \(A\ge9\)với mọi x; y

Dấu "=" xảy ra <=> 3x + y - 1 = 0 và y + 1 = 0

<=> 3x + y = 1 và y = -1

<=> x = -4 và y = -1

KL: Amin = 9 <=> x = -4 và y = -1

14 tháng 11 2016

\(R=9x^2-6xy+y^2+y^2+5=\left(3x-y\right)^2+y^2+5\)

Ta thấy \(\left(3x-y\right)^2\ge0\)

\(y^2\ge0\)

suy ra \(R\ge0+0+5=5\)

dấu bằng xảy ra khi y=0 và 3x-y=0 hay x=0 và y=0

14 tháng 11 2016

\(9x^2-6xy+2y^2+5=\left(3x\right)^2-6xy+y^2+y^2+5=\left(3x-y\right)^2+y^2+5\)

mả \(\left(3xy-y\right)^2+y^2\ge0\)

nen \(\left(3x+y\right)^2+y^2+5\ge5\)

dau bang say ra khi \(\left(3x+y\right)^2+y^2=0\)

vậy gái trị nhỏ nhất của biểu thức là 5

7 tháng 4 2017

Chỗ cuối kia phải là +2 chứ bạn ??!

7 tháng 4 2017

me nghĩ đề sai

=> đề sai ,thử thay x=1/3;y=1=> P<0

14 tháng 5 2021

`9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0`

`<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0`

`<=> (3x + y - 1)2 = 37 - 2(y + 1)^2`

Vì `(3x+y=1)^2>=0`

`=>2(y+1)^2<=37`

`=>(y+1)^2<=37/2`

Mà `(y+1)^2` là scp

`=>(y+1)^2 in {0,1,4,8,16}`

`=> y + 1 ∈{0; 1; -1; 2; -2; 3; -3; 4; -4}`

`=>y in {-1,0,-2,1,-3,2,-4,3,-5}`

Đến đây dễ rồi thay y vào rồi tìm x thôi!

16 tháng 9 2018

 A = 5x² + 2y² + 6xy + 2x + 6y + 32 

⇒ 2A = 10x² + 4y² + 12xy + 4x + 12y + 64 

= (4y² + 12xy + 9x²) + x² + 4x + 12y + 64 

= (2y + 3x)² + x² - 14x + 18x + 12y + 9 + 49 + 6 

= (3x + 2y)² + (18x + 12y) + 9 + (x² - 14x + 49) + 6 

= [ (3x + 2y)² + 6(3x + 2y) + 9 ] + (x - 7)² + 6 

= (3x + 2y + 3)² + (x - 7)² + 6. 

Do (3x + 2y + 3)² ≥ 0; (x - 7)² ≥ 0 ⇒ (3x + 2y + 3)² + (x - 7)² ≥ 0. 

⇒ 2A = (3x + 2y + 3)² + (x - 7)² + 6 ≥ 6 

⇒ A ≥ 3. Dấu ''='' xảy ra ⇔ (x - 7)² = 0 và (3x + 2y + 3)² = 0 

⇔ x - 7 = 0 và 3x + 2y + 3 = 0 

⇔ x = 7 và 2y = -3x - 3 = -3.7 - 3 = -24 

⇔ x = 7 và y = -12. Vậy GTNN của A = 3 đạt được ⇔ x = 7 và y = -12.

Nguồn: https://vn.answers.yahoo.com/

15 tháng 8

\(K = 9 x^{2} + 2 y^{2} - 6 x y + 8 x = 9 \left(\left(\right. x - \frac{y}{3} + \frac{4}{9} \left.\right)\right)^{2} + \left(\left(\right. y + \frac{4}{3} \left.\right)\right)^{2} - \frac{32}{9}\)

Vì bình \(\overset{}{}\geq0\) nên:

Kmin⁡= -\(\frac{32}{9}\)

Khi \(\textrm{ }\textrm{ } x = - \frac{8}{9} , \textrm{ }\textrm{ } y = - \frac{4}{3}\).