K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

1) \(\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

2) \(x^2-2x=24\)

\(\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow x^2+4x-6x-24=0\)

\(\Leftrightarrow x\left(x+4\right)-6\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

 

10 tháng 8 2023

Câu 3 số xấu rồi e

NV
11 tháng 4 2022

\(f'\left(x\right)=x^2+2x\)

a.

\(f'\left(-3\right)=3\) ; \(f\left(-3\right)=-2\)

Phương trình tiếp tuyến:

\(y=3\left(x+3\right)-2\Leftrightarrow y=3x+7\)

b.

Gọi \(x_0\) là hoành độ tiếp điểm, do hệ số góc tiếp tuyến bằng 3

\(\Rightarrow f'\left(x_0\right)=3\Rightarrow x_0^2+2x_0=3\Rightarrow x_0^2+2x_0-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x_0=1\Rightarrow y_0=-\dfrac{2}{3}\\x_0=-3\Rightarrow y_0=-2\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=3\left(x-1\right)-\dfrac{2}{3}=3x-\dfrac{11}{3}\\y=3\left(x+3\right)-2=3x+7\end{matrix}\right.\)

c. Tiếp tuyến song song (d) nên có hệ số góc bằng 8

Gọi \(x_0\) là hoành độ tiếp điểm \(\Rightarrow x_0^2+2x_0=8\)

\(\Rightarrow\left[{}\begin{matrix}x_0=2\Rightarrow y_0=\dfrac{14}{3}\\x_0=-4\Rightarrow y_0=-\dfrac{22}{3}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=8\left(x-2\right)+\dfrac{14}{3}=...\\y=8\left(x+4\right)-\dfrac{22}{3}=...\end{matrix}\right.\)

19 tháng 9 2021

Đêm r tách bài r bn êu

Em ơi bạn ấy có ghi ở cap là cần giúp bài 3 thôi mà.

Bài 2:

a: Xét ΔABC có

BI,CI là các đường phân giác

BI cắt CI tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

b: Ta có: \(\widehat{DIB}=\widehat{IBC}\)(hai góc so le trong, DI//BC)

\(\widehat{DBI}=\widehat{IBC}\)(BI là phân giác của góc DBC)

Do đó: \(\widehat{DIB}=\widehat{DBI}\)

=>ΔDIB cân tại D

c: Ta có: \(\widehat{EIC}=\widehat{ICB}\)(hai góc so le trong, EI//BC)

\(\widehat{ECI}=\widehat{ICB}\)(CI là phân giác của góc ECB)

Do đó: \(\widehat{EIC}=\widehat{ECI}\)

=>ΔEIC cân tại E

d: Ta có: ΔDIB cân tại D

=>DB=DI

Ta có: ΔEIC cân tại E

=>EI=EC

Ta có: DI+IE=DE

mà DI=DB

và EC=EI

nên DB+EC=DE

Bài 1:

a: Xét ΔABC có

BE,CF là các đường phân giác

BE cắt CF tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

=>AI là phân giác của góc BAC
b: ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là phân giác của góc ABC)

\(\widehat{ACF}=\widehat{FCB}=\dfrac{\widehat{ACB}}{2}\)(CF là phân giác của góc ACB)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABE}=\widehat{EBC}=\widehat{ACF}=\widehat{FCB}\)

c: ta có: \(\widehat{EBC}=\widehat{FCB}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

d: Xét ΔABE và ΔACF có

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

=>BE=CF

e:

Ta có: ΔAEB=ΔAFC

=>AE=AF

Ta có: AE+EC+AC
AF+FB=AB

mà AE=AF 

và AC=AB

nên EC=FB

Xét ΔFIB và ΔEIC có

FB=EC

\(\widehat{FBI}=\widehat{ECI}\)

BI=CI

Do đó: ΔFIB=ΔEIC

Gọi số học sinh khối 6 là x

Theo đề, ta có: \(x-3\in BC\left(8;12;15\right)\)

\(\Leftrightarrow x-3\in\left\{120;240;360;...\right\}\)

\(\Leftrightarrow x\in\left\{123;243;363\right\}\)

mà 200<=x<=300

nên x=243

3 tháng 10 2021

Gọi số học sinh khối 6 là a

a + 3 \(⋮8;12;15\)

\(\Rightarrow\) \(a+3\in BC\left(8;12;15\right)\)

8 = 2 . 3

12 = 22 . 3

15 = 3 . 5

\(\Rightarrow\) BCNN (8; 12; 15) = 22 . 3 . 5 = 60

Mà 203 < a + 3 < 303 học sinh

\(\Rightarrow\) a + 3 \(\in\) {240; 300}

\(\Rightarrow\) a \(\in\) {237; 207}

9 tháng 11 2021

undefined

Bạn tham khảo, có j sai thì báo lại mình nhé