cho mình hỏi tại sao lại được như này ạ
\(\frac{a^2}{c^2}\)= \(\frac{b^2}{d^2}\)= \(\frac{ab}{cd}\)
thế ạ mình ko hỉu mong mn giúp mình giải thik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng dãy tỉ số = nhau ta có
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a-b}{c-d}=\frac{a+b}{c-d}\)
Ta xét
Vế 1 \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{ab}{cd}\)( nhân cả tử mẫu lại với nhau )
Vế 2 : \(\frac{a-b}{c-d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a-b\right)\left(a+b\right)}{\left(c-d\right)\left(c+d\right)}=\frac{a^2-b^2}{c^2-d^2}\) ( nhân cả tử cả mẫu với nhau )
Mà Vế 1 = vế 2
=> \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(đpcm\right)\)
Xét tam giác ABC có:
M là trung điểm AB (gt)
N là trung điểm AB (gt)
=> MN là đường trung bình tam giác ABC
=> MN // BC và MN = 1/2 BC
Lâu chưa giải hình ^^
a^2 = b^2 ; c^2 = d^2
=> a = b ; c = d
=> ab = a^2 = b^2 ; cd = c^2 = d^2
=> đpcm