Gía trị của x thỏa mãn đẳng thức −2/3 .x=4/5 là:
a) 6/5 b)−5/6 c)−6/5 d)5/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{-2}{3}\)\(.\)\(x\)\(=\)\(\frac{4}{5}\)
=> \(x\)\(=\)\(\frac{4}{5}\)\(:\)\(\frac{-2}{3}\)
\(x\)\(=\)\(\frac{4}{5}\)\(.\)\(\frac{-3}{2}\)
\(x\)\(=\)\(\frac{-6}{5}\)
Vậy đáp án C đúng
sin-no-se vì đã ko làm phần b( bạn xem lại đề phần b nhé sao lại 2-/3x
\(2\left(3x-5\right)-4\left(2+3\left(x-1\right)\right)=3\left(x-5\right)\)
\(6x-10-4\left(2+3x-3\right)=3x-15\)
\(6x-10-8-12x+12=3x-15\)
\(6x-12x-3x=-15+10+8-12\)
\(-9x=-9\)
\(x=1\)
Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:
Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24
mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không
1) -4 - x > 3 => -4 - 3 > x => -7 > x => số nguyên x lớn nhất = -8
2) Vì x2 + 2 \(\ge\) 2 ; y4 + 6 \(\ge\) 6 với mọi x; y => (x2 + 2). (y4 + 6) \(\ge\) 2.6 = 12 > 10
=> Không tồn tại x; y để thỏa mãn
3) A nguyên khi 5 chia hết cho n- 7 hay n - 7 là ước của 5
mà n nhỏ nhất nên n - 7 nhỏ nhất => n - 7 = -5 => n = 2
4) x2 + 4x + 5 = x(x+ 4) + 5 chia hết cho x + 4 => 5 chia hết cho x + 4
=> x + 4 \(\in\) {5;-5;1;-1} => x \(\in\) {1; -9; -3; -5}
5) Gọi số đó là n
n chia 3 dư 1 => n - 1 chia hết cho 3 => n - 1 + 9 = n + 8 chia hết cho 3
n chia cho 5 dư 2 => n - 2 chia hết cho 5 => n - 2 + 10 = n + 8 chia hết cho 5
=> n + 8 chia hết cho 3 và 5 => n + 8 chia hết cho 15 => n + 8 \(\in\) B(15)
Vì n có 4 chữ số nên n + 8 \(\in\) {68.15 ; 69.15 ; ...' ; 667.15}
=> có (667 - 68) : 1 + 1 = 600 số
6) (2x-5).(y-6) = 17 = 1.17 = 17.1 = (-1).(-17) = (-17).(-1)
=> có 4 cặp x; y thỏa mãn
Ta có: \(\dfrac{-2}{3}\). x = \(\dfrac{4}{5}\)
=> x = \(\dfrac{4}{5}\): \(\dfrac{-2}{3}\)= \(\dfrac{4}{5}\). \(\dfrac{-3}{2}\)= \(\dfrac{4.\left(-3\right)}{5.2}\)= \(\dfrac{2.\left(-3\right)}{5.1}\)
=> x = \(\dfrac{-6}{5}\)
Vậy: ta chọn c) \(\dfrac{-6}{5}\)