CMR:
a, x8n+x4n+1\(⋮\)x2n+xn+1
b,x3m+1+x3n+2\(⋮\)x2+x+1\(\forall\)m, n \(\in\)N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)
B(x)=1-x^n/1-x
A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x
x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)
=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1
Vì \(A\left(x\right)=x^{2n}+x^n+1\) chỉ có một hằng số là1
đa thức \(x^2+x+1\) cũng chỉ có một hằng số là 1
Để \(A\left(x\right)⋮x^2+x+1\) thì thì \(A\left(x\right)\) phải có số mũ tương ứng với các bậc như đa thức : => n=1
Lời giảiL
$A=1+x+x^2+...+x^n$
$xA=x+x^2+x^3+...+x^n+x^{n+1}$
$\Rightarrow xA-A=(x+x^2+x^3+...+x^{n+1})-(1+x+x^2+...+x^n)$
Hay $A(x-1)=x^{n+1}-1$
$\Rightarrow A=\frac{x^{n+1}-1}{x-1}$ với $x$ nguyên dương khác $1$
Vì $A$ nguyên với mọi $x$ nguyên dương, $n$ tự nhiên nên $\frac{x^{n+1}-1}{x-1}$ nguyên
$\Rightarrow x^{n+1}-1\vdots x-1$ (đpcm)
\(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^n-y^n\right)\left(x^{3n}+y^{3n}\right)\\ =\left[\left(x^n\right)^2+x^ny^n+\left(y^n\right)^2\right]\left(x^n-y^n\right)\left(x^{3n}+y^{3n}\right)\\ =\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)=x^{6n}-y^{6n}\)
a) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}< 1\rightarrow Sai\)
vì \(\dfrac{2x}{x+1}< 1\Leftrightarrow\dfrac{x-1}{x+1}< 0\Leftrightarrow x< 1\left(mâu.thuẫn.x>1\right)\)
b) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}>1\rightarrowĐúng\)
Vì \(\dfrac{2x}{x+1}>1\Leftrightarrow\dfrac{x-1}{x+1}>0\Leftrightarrow x>1\left(đúng.đk\right)\)
c) \(\forall x\in N,x^2⋮6\Rightarrow x⋮6\rightarrowđúng\)
\(\forall x\in N,x^2⋮9\Rightarrow x⋮9\rightarrowđúng\)
`@` `\text {dnammv}`
`a,`
`M(x)=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2`
`= (4x^4+5x^4)+(3x^3-3x^3)+(x^2+x^2)-x`
`= 9x^4+2x^2-x`
`N(x)=-x^2-x^4+4x^3-x^2-5x^3+3x+1+x`
`=-x^4+(4x^3-5x^3)+(-x^2-x^2)+(3x+x)+1`
`= -x^4-x^3-2x^2+4x+1`
`b,`
`M(x)+N(x)=(9x^4+2x^2-x)+(-x^4-x^3-2x^2+4x+1)`
`= 9x^4+2x^2-x-x^4-x^3-2x^2+4x+1`
`= (9x^4-x^4)-x^3+(2x^2-2x^2)+(-x+4x)+1`
`= 8x^4-x^3+3x+1`
`N(x)-M(x)=(-x^4-x^3-2x^2+4x+1)-(9x^4+2x^2-x)`
`= -x^4-x^3-2x^2+4x+1-9x^4-2x^2+x`
`= (-x^4-9x^4)-x^3+(-2x^2-2x^2)+(4x+x)+1`
`= -10x^4-x^3-4x^2+5x+1`
`c,`
`P(x)=M(x)+N(x)`
`P(x)= 8x^4-x^3+3x+1`
Thay `x=-2`
`P(-2)= 8*(-2)^4-(-2)^3+3*(-2)+1`
`= 8*16+8-6+1`
`= 136-6+1=131`
Lời giải:
Ta có:
\(x^{8n}+x^{4n}+1=(x^{4n})^2+2.x^{4n}+1-x^{4n}\)
\(=(x^{4n}+1)^2-x^{4n}=(x^{4n}+1+x^{2n})(x^{4n}+1-x^{2n})\)
Xét \(x^{4n}+1+x^{2n}=(x^{2n})^2+2.x^{2n}+1-x^{2n}=(x^{2n}+1)^2-x^{2n}\)
\(=(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
Do đó:
\(x^{8n}+x^{4n}+1=(x^{4n}+1-x^{2n})(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
\(\Rightarrow x^{8n}+x^{4n}+1\vdots x^{2n}+x^n+1\) (đpcm)
b)
Sửa đề: \(x^{3m+1}+x^{3n+2}+1\vdots x^2+x+1\)
Đặt \(A=x^{3m+1}+x^{3n+2}+1\)
\(\Leftrightarrow A=x(x^{3m}-1)+x+x^2(x^{3n}-1)+x^2+1\)
\(\Leftrightarrow A=x[ (x^3)^m-1]+x^2[(x^3)^n-1]+(x^2+x+1)\)
Khai triển:
\((x^3)^m-1=(x^3)^m-1^m=(x^3-1).T=(x-1)(x^2+x+1)T\)
(đặt là T vì phần biểu thức đó không quan trọng)
\(\Rightarrow (x^3)^m-1\vdots x^2+x+1\)
Tương tự, \((x^3)^n-1\vdots x^2+x+1\)
Do đó, \(A=x(x^{3m}-1)+x^2(x^{3n}-1)+x^2+x+1\vdots x^2+x+1\)
Ta có đpcm.