K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

\(\dfrac{\left(2^8-2^6\right)^3}{64^4}=\dfrac{27}{64}\)

\(\dfrac{192^3}{64^4}=\dfrac{27}{64}\)

\(\dfrac{\left(3\times64\right)^3}{64^3\times64}=\dfrac{27}{64}\)

\(\dfrac{3^3\times64^3}{64\times64^3}=\dfrac{27}{64}\)

\(\dfrac{3^3}{64}=\dfrac{27}{64}\)

\(\dfrac{27}{64}=\dfrac{27}{64}\)

1 tháng 10 2023

\(\left(3-x\right)^3=-\dfrac{27}{64}\)

\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)

\(=>3-x=\dfrac{-3}{4}\)

\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)

\(x=\dfrac{15}{4}\)

________

\(\left(x-5\right)^3=\dfrac{1}{-27}\)

\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)

\(=>x-5=\dfrac{-1}{3}\)

\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)

\(x=\dfrac{14}{3}\)

_____________

\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)

\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)

\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)

\(x=\dfrac{3}{2}+\dfrac{1}{2}\)

\(x=2\)

________

\(\left(2x-1\right)^2=\dfrac{1}{4}\)            

\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\)           hoặc              \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(=>2x-1=\dfrac{1}{2}\)                                       \(2x-1=\dfrac{-1}{2}\)

\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\)                               \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)

\(2x=\dfrac{3}{2}\)                                                     \(2x=\dfrac{1}{2}\)

\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\)                                     \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)

\(x=\dfrac{3}{4}\)                                                       \(x=\dfrac{1}{4}\)

____________

\(\left(2-3x\right)^2=\dfrac{9}{4}\)

\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\)                hoặc                  \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)

\(=>2-3x=\dfrac{3}{2}\)                                               \(2-3x=\dfrac{-3}{2}\)

\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\)                                      \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)

\(3x=\dfrac{1}{2}\)                                                            \(3x=\dfrac{7}{2}\)

\(x=\dfrac{1}{2}.\dfrac{1}{3}\)                                                          \(x=\dfrac{7}{2}.\dfrac{1}{3}\)

\(x=\dfrac{1}{6}\)                                                               \(x=\dfrac{7}{6}\)

______________

\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này

1 tháng 10 2023

(3-x)3=(-\(\dfrac{3}{4}\))3

3-x=-\(\dfrac{3}{4}\)

  x=3-(-\(\dfrac{3}{4}\))

  x=\(\dfrac{15}{4}\)

27 tháng 2 2022

Đề bài là:Tính các giá trị biểu thức sau ạ

a: \(=\left(9-\dfrac{13}{18}\right):\dfrac{325}{27}-\dfrac{17}{8}:\dfrac{51}{40}\)

\(=\dfrac{149}{18}\cdot\dfrac{27}{325}-\dfrac{17}{8}\cdot\dfrac{40}{51}\)

\(=\dfrac{447}{650}-\dfrac{5}{3}=-\dfrac{1909}{1950}\)

b: \(=\dfrac{48}{64}+\left(\dfrac{4}{5}-2-\dfrac{4}{15}\right):\dfrac{11}{3}\)

\(=\dfrac{3}{4}+\dfrac{-22}{15}\cdot\dfrac{3}{11}=\dfrac{3}{4}-\dfrac{2}{5}=\dfrac{15-8}{20}=\dfrac{7}{20}\)

10 tháng 8 2021

ai giúp mìn vứi ❤

11 tháng 4 2017

\(\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{8^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...0...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=0\)

Vậy...

11 tháng 4 2017

eoeo

a: \(A=3^{\dfrac{2}{5}}\cdot3^{\dfrac{1}{5}}\cdot3^{\dfrac{1}{5}}=3^{\dfrac{2}{5}+\dfrac{1}{5}+\dfrac{1}{5}}=3^{\dfrac{4}{5}}\)

b: \(B=\left(-27\right)^{\dfrac{1}{3}}=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}=\left(-3\right)^{\dfrac{1}{3}\cdot3}=\left(-3\right)^1=-3\)

c: \(C=\sqrt[3]{-64}\cdot\left(\dfrac{1}{2}\right)^3\)

\(=\sqrt[3]{\left(-4\right)^3}\cdot\dfrac{1}{2^3}=-4\cdot\dfrac{1}{8}=-\dfrac{4}{8}=-\dfrac{1}{2}\)

d: \(D=\left(-27\right)^{\dfrac{1}{3}}\cdot\left(\dfrac{1}{3}\right)^4\)

\(=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}\cdot\dfrac{1}{3^4}\)

\(=\left(-3\right)^{3\cdot\dfrac{1}{3}}\cdot\dfrac{1}{81}=\dfrac{-3}{81}=\dfrac{-1}{27}\)

e: \(E=\left(\sqrt{3}+1\right)^{106}\cdot\left(\sqrt{3}-1\right)^{106}\)

\(=\left[\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\right]^{106}\)

\(=\left(3-1\right)^{106}=2^{106}\)

f: \(F=360^{\sqrt{5}+1}\cdot20^{3-\sqrt{5}}\cdot18^{3-\sqrt{5}}\)

\(=360^{\sqrt{5}+1}\cdot\left(20\cdot18\right)^{3-\sqrt{5}}\)

\(=360^{\sqrt{5}+1}\cdot360^{3-\sqrt{5}}=360^{\sqrt{5}+1+3-\sqrt{5}}=360^4\)

g: \(G=2023^{3+2\sqrt{2}}\cdot2023^{2\sqrt{2}-3}\)

\(=2023^{3+2\sqrt{2}+2\sqrt{2}-3}\)

\(=2023^{4\sqrt{2}}\)

Ta có: \(\dfrac{\left(x+3\right)^5}{\left(x+3\right)^2}=\dfrac{64}{27}\)

\(\Leftrightarrow\left(x+3\right)^3=\left(\dfrac{8}{3}\right)^3\)

\(\Leftrightarrow x+3=\dfrac{8}{3}\)

\(\Leftrightarrow x=\dfrac{8}{3}-3=\dfrac{8}{3}-\dfrac{9}{3}\)

hay \(x=-\dfrac{1}{3}\)

Vậy: \(x=-\dfrac{1}{3}\)

GV
26 tháng 4 2017

a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)

\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)

\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)

\(=2^3+30-\dfrac{3}{2}\)

\(=36,5\)

GV
26 tháng 4 2017

b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)

\(=0,1^{-1}-2^2-2^{-4}\)

\(=10-4-\dfrac{1}{16}\)

\(=\dfrac{95}{16}\)

24 tháng 10 2021

\(\dfrac{\left(x+3\right)^5}{\left(x+3\right)^2}=\dfrac{64}{27}\)

\(\Leftrightarrow x+3=\dfrac{4}{3}\)

hay \(x=-\dfrac{5}{3}\)

a) Ta có: \(\left(\dfrac{9}{25}-2\cdot18\right):\left(3\dfrac{4}{5}+0.2\right)\)

\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)\)

\(=\left(\dfrac{9}{25}-\dfrac{900}{25}\right):\dfrac{20}{5}\)

\(=\dfrac{-891}{25}\cdot\dfrac{1}{4}\)

\(=-\dfrac{891}{100}\)

b) Ta có: \(\dfrac{3}{8}\cdot19\dfrac{1}{3}+\dfrac{3}{8}\cdot33\dfrac{1}{3}\)

\(=\dfrac{3}{8}\cdot\dfrac{58}{3}+\dfrac{3}{8}\cdot\dfrac{100}{3}\)

\(=\dfrac{58}{8}+\dfrac{100}{8}\)

\(=\dfrac{158}{8}=\dfrac{79}{4}\)

c) Ta có: \(15\cdot\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)

\(=15\cdot\dfrac{4}{9}-\dfrac{7}{3}\)

\(=\dfrac{20}{3}-\dfrac{7}{3}\)

\(=\dfrac{13}{3}\)

d) Ta có: \(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)

\(=\dfrac{1}{2}\cdot8-\dfrac{2}{5}-1\)

\(=4-1-\dfrac{2}{5}\)

\(=3-\dfrac{2}{5}\)

\(=\dfrac{15}{5}-\dfrac{2}{5}=\dfrac{13}{5}\)

e) Ta có: \(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0.45+\dfrac{3}{4}\right)\cdot\left(-1\dfrac{5}{9}\right)\)

\(=\dfrac{25}{4}\cdot\dfrac{-1}{15}-\left(\dfrac{9}{20}+\dfrac{15}{20}\right)\cdot\dfrac{-14}{9}\)

\(=\dfrac{-25}{60}-\dfrac{24}{20}\cdot\dfrac{-14}{9}\)

\(=\dfrac{-25}{60}+\dfrac{28}{15}\)

\(=\dfrac{-25}{60}+\dfrac{112}{60}\)

\(=\dfrac{87}{60}=\dfrac{29}{20}\)

f) Ta có: \(\left(-\dfrac{1}{3}\right)-\left(-\dfrac{3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)

\(=-\dfrac{1}{3}-1+\left(\dfrac{1}{2}\right)^2\cdot\dfrac{1}{2}\)

\(=\dfrac{-4}{3}+\dfrac{1}{4}\cdot\dfrac{1}{2}\)

\(=\dfrac{-4}{3}+\dfrac{1}{8}\)

\(=\dfrac{-32}{24}+\dfrac{3}{24}=\dfrac{-29}{24}\)

g) Ta có: \(\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{4}\right)^{20}\)

\(=\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{2}\right)^{40}\)

\(=\left(\dfrac{1}{2}\right)^{55}\)

\(=\dfrac{1}{2^{55}}\)

h) Ta có: \(\dfrac{5^4\cdot20}{25^5\cdot4^5}\)

\(=\dfrac{5^4\cdot5\cdot2^2}{5^{10}\cdot2^{10}}\)

\(=\dfrac{5^5}{5^{10}}\cdot\dfrac{2^2}{2^{10}}\)

\(=\dfrac{1}{5^5}\cdot\dfrac{1}{2^8}\)

\(=\dfrac{1}{800000}\)