K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2021

\(\Rightarrow\left(x^2+2\right)^2=2x^4-4x^2+m\)

\(\Rightarrow m=-x^4+8x^2+4\)

BBT \(f\left(x\right)=-x^4+8x^2+4\Rightarrow4< m< 20\)

25 tháng 8 2021

Phương trình ⇒ (x2 + 2)2 = 2x4 - 4x2 + m

⇔ m = - x4 + 8x2 + 4 (1)

(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = m và độ thị hàm số y = f(x) =  - x4 + 8x2 + 4.

Đạo hàm : \(y'\) = - 4x3 + 16x = x (16 - 4x2) = x (4 - 2x) (4 + 2x)

y' = 0 ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\) 

y' > 0 ⇔ x ∈ \(\left(-\infty;-\dfrac{1}{2}\right)\cup\left(0;\dfrac{1}{2}\right)\) (Đồng biến)

y' < 0 ⇔ x ∈ \(\left(-\dfrac{1}{2};0\right)\cup\left(\dfrac{1}{2};+\infty\right)\) (nghịch biến)

(1) có 4 nghiệm phân biệt khi y = m cắt y = f(x) tại 4 điểm phân biệt

⇔ f(0) < m < f\(\left(\dfrac{1}{2}\right)\)

⇔ 4 < m < 20

 

 

 

28 tháng 8 2017

Chọn D

31 tháng 7 2017

Đáp án D

Từ đồ thị đã cho, ta suy ra đồ thị của hàm số  

Từ đó ta có kết quả thỏa mãn yêu cầu bài toán 

NV
25 tháng 12 2020

Đặt \(\left|x\right|=t\ge0\Rightarrow t^2-4t-m=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4+m>0\\t_1+t_2=4>0\\t_1t_2=-m>0\end{matrix}\right.\) \(\Leftrightarrow-4< m< 0\Rightarrow m=\left\{-3;-2;-1\right\}\)

5 tháng 8 2021

thank you

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên

22 tháng 5 2017

Chọn đáp án A

8 tháng 4 2018

Đáp án B

2 tháng 1 2018

Chọn B.

Ta có

T

Ta có bảng biến thiên của hàm số như sau:

Từ bảng biến thiên ta thấy, phương trình  2 x 4 - 4 x 2 + 3 2   =   m 2 - m + 1 2   có đúng 8 nghiệm thực phân biệt 


10 tháng 3 2018

Đáp án C.

7 tháng 5 2019

Khi đó phương trình đã cho trở thành 

Để phương trình đã cho có bốn nghiệm thực phân biệt ⇔  phương trình (2) hai nghiệm phân biệt thuộc (1;3)

có 4 giá trị nguyên m thỏa. Chọn A.