K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2015

20152   <     2012x 7

chuẩn luôn **** đi

Chắc đề thế này! 

\(S=1+2+2^2+2^3+2^4+...+2^{2014}\)

\(2S=2+2^2+2^3+2^4+...+2^{2015}\)

\(2S-S=\left(2+2^2+2^3+...+2^{2015}\right)-\left(1+2+2^2+...+2^{2014}\right)\)

\(\Rightarrow2S-S=S=2^{2015}-1< 2^{2015}\Rightarrow S< D\)

21 tháng 12 2021

\(2^{333}< 3^{222}\)

21 tháng 12 2021

mình cần cách giải

24 tháng 9 2020

Ta có : \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1^{2019}=1\)

Vì \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}< 1\)

=> \(\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)

24 tháng 9 2020

       Bài làm :

Cách 1:

Ta có :

 \(\frac{2^9}{3^{2010}}\div\frac{3^9}{2^{2010}}=\frac{2^9.2^{2010}}{3^{2010}.3^9}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1\)

 \(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)

Cách 2 :

Nhận thấy :

  • 29 < 39
  • 32010 > 22010

\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)