khử mẫu bt lấy căn :
a) \(3xy\cdot\sqrt{\dfrac{2}{xy}}\)
b)\(x\cdot\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}\)
c) \(xy\cdot\sqrt{\dfrac{1}{xy}}+x\cdot\sqrt{\dfrac{y}{x}}-y\cdot\sqrt{\dfrac{x}{y}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\), ta có:
\(A=\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\times\dfrac{2}{a+b}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\)\(\times\dfrac{a^3+ab^2+a^2b+b^3}{ab^3+a^3b}\)
\(=\left(\dfrac{b+a}{ab}\times\dfrac{2}{a+b}+\dfrac{b^2+a^2}{a^2b^2}\right)\)\(\times\dfrac{a^2\left(a+b\right)+b^2\left(a+b\right)}{ab\left(a^2+b^2\right)}\)
\(=\dfrac{2ab+b^2+a^2}{a^2b^2}\times\dfrac{\left(a+b\right)\left(a^2+b^2\right)}{ab\left(b^2+a^2\right)}\)
\(=\dfrac{\left(a+b\right)^3}{a^3b^3}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{\left(xy\right)^3}}\)
Ta có: \(\dfrac{\sqrt{y}}{x-\sqrt{xy}}+\dfrac{\sqrt{y}}{x+\sqrt{xy}}\)
\(=\dfrac{\sqrt{y}\left(x+\sqrt{xy}\right)+\sqrt{y}\left(x-\sqrt{xy}\right)}{x^2-xy}\)
\(=\dfrac{\sqrt{y}\left(x+\sqrt{xy}+x-\sqrt{xy}\right)}{x\left(x-y\right)}=\dfrac{2x\sqrt{y}}{x\left(x-y\right)}\)
\(=\dfrac{2\sqrt{y}}{x-y}=\dfrac{2\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(\Rightarrow A=\dfrac{\sqrt{x}+\sqrt{y}-1}{x+\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{2\sqrt{xy}}.\dfrac{2\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{\sqrt{x}+\sqrt{y}-1}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}+\dfrac{1}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{\sqrt{x}+\sqrt{y}-1+1}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{1}{\sqrt{x}}=\dfrac{\sqrt{x}}{x}\)
\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)
\(\frac{5}{2\sqrt{5}}=\frac{10\sqrt{5}}{20}=\frac{\sqrt{5}}{2}\)
\(\frac{1}{3\sqrt{20}}=\frac{3\sqrt{20}}{180}=\frac{\sqrt{20}}{60}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)
\(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{10\sqrt{2}\left(\sqrt{2}+1\right)}{50}=\frac{20+10\sqrt{2}}{50}=\frac{10\left(2+\sqrt{2}\right)}{50}=\frac{2+\sqrt{2}}{5}\)
\(\frac{y+b\sqrt{y}}{b\sqrt{y}}=\frac{y\left(\sqrt{y}+b\right)}{by}=\frac{\sqrt{y}+b}{b}\)
+ Ta có:
.
+ Ta có:
.
+ Ta có:
.
+ Ta có:
.
+ Ta có:
.
Cách khác:
Nguồn : Bài 50 trang 30 SGK Toán 9 tập 1 - loigiaihay.com
#Ye Chi-Lien
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
bạn làm rồi nên mk chỉ viết kq thôi nhé :)
a)\(\dfrac{4\sqrt{6x}}{3}\)
b)\(\left(2-y\right)\sqrt{xy}\)
Bài 1:
a: \(=\sqrt{32.4}=\dfrac{9}{5}\sqrt{10}\)
b: \(=\sqrt{5\cdot5\cdot7\cdot7\cdot11\cdot11}=5\cdot7\cdot11=385\)
c: \(=5-2\sqrt{6}\)
d: \(=18-1=17\)
e: \(=3\sqrt{2}-2\sqrt{3}+7\sqrt{3}-7\sqrt{2}=-4\sqrt{2}+5\sqrt{3}\)
a: \(=3xy\cdot\dfrac{\sqrt{2}}{\sqrt{xy}}=3\sqrt{2}\sqrt{xy}\)
b: \(=x\cdot\dfrac{\sqrt{6}}{\sqrt{x}}+\dfrac{\sqrt{6}}{3}\sqrt{x}\)
\(=\sqrt{6}\sqrt{x}+\dfrac{\sqrt{6}}{3}\sqrt{x}=\dfrac{4\sqrt{6}}{3}\cdot\sqrt{x}\)
c: \(=\sqrt{xy}+x\cdot\dfrac{\sqrt{y}}{\sqrt{x}}-y\cdot\dfrac{\sqrt{x}}{\sqrt{y}}\)
\(=\sqrt{xy}+\sqrt{xy}-\sqrt{xy}=\sqrt{xy}\)