Cho: \(x=\dfrac{7}{3a-1}\) .Tìm a để: a)x=-1 b)x=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: x = 1
=> \(\frac{7}{3a-1}=1\)
=> \(3a-1=7\)
=> 3a = 8
=> a = 8/3
b) Ta có: x = 7
=> \(\frac{7}{3a-1}=7\)
=> 3a - 1 = 7 : 7
=> 3a - 1 = 1
=> 3a = 2
=> a = 2/3
a) \(\dfrac{5}{3a-1}=1\)
\(\Rightarrow3a-1=5\)
\(\Rightarrow3a=6\)
\(\Rightarrow a=\dfrac{6}{3}=2\)
b) \(\dfrac{5}{3a-1}=-5\)
\(\Rightarrow3a-1=5:\left(-5\right)=-1\)
\(\Rightarrow3a=-1+1=0\)
\(\Rightarrow a=0:3=0\)
a) x = 1
⇒ 3a - 1 = 5
⇒ 3a = 6
⇒ a = 2
b) x = 5
⇒ 3a - 1 = 1
⇒ 3a = 2
⇒ a = 2/3
2: \(\left(\dfrac{7}{a+7}+\dfrac{a^2+49}{a^2-49}-\dfrac{7}{a-7}\right):\dfrac{a+1}{2}\)
\(=\dfrac{7a-49+a^2+49-7a-49}{\left(a-7\right)\left(a+7\right)}\cdot\dfrac{2}{a+1}\)
\(=\dfrac{a^2-49}{\left(a-7\right)\left(a+7\right)}\cdot\dfrac{2}{a+1}=\dfrac{2}{a+1}\)
3: \(=\dfrac{x^4-4x^2+4x^2}{x^2-4}\cdot\left(\dfrac{x+2}{x-4}+\dfrac{2-3x}{x\left(x^2-4\right)}\cdot\dfrac{x^2-4}{x-2}\right)\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\left(\dfrac{x+2}{x-4}+\dfrac{2-3x}{x\left(x-2\right)}\right)\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x^2-4\right)+\left(2-3x\right)\left(x-4\right)}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-4x+2x-8-3x^2+12x}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-3x^2+10x-8}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-x^2-2x^2+2x+8x-8}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^3\left(x-1\right)\left(x^2-2x+8\right)}{\left(x-2\right)^2\cdot\left(x+2\right)\left(x-4\right)}\)
a: \(A=\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x}{x^2+x+1}\)
\(P=\dfrac{A}{B}=\sqrt{x}+1\)
P<7/4
=>căn x<3/4
=>0<x<9/16
đk x > 0
\(\dfrac{A}{B}=\dfrac{\dfrac{x+2\sqrt{x}}{x}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\dfrac{\sqrt{x}+2}{\sqrt{x}}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{7}{4}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+4-7\sqrt{x}}{4\sqrt{x}}< 0\Leftrightarrow\dfrac{-3\sqrt{x}+4}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3\sqrt{x}+4\ne0\\-3\sqrt{x}+4< 0\\4\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{16}{9}\\x< \dfrac{16}{9}\\x\ne0\end{matrix}\right.\)
a) \(x=-1\Leftrightarrow\frac{7}{3a-1}=-1\)
\(\Leftrightarrow3a-1=-7\Leftrightarrow a=-2\)
b) \(x=7\Leftrightarrow\frac{7}{3a-1}=7\)
\(\Leftrightarrow3a-1=1\Leftrightarrow a=\frac{2}{3}\)
a) x = -1
7/3a - 1 = -1
7 = -3a + 1
7 - 1 = -3a
6 = -3a
6 : (-3) = a
-2 = a
=> a = -2
b) x = 7
7/3a - 1 = 7
7 = 7(3a - 1)
7 : 7 = 3a - 1
1 = 3a - 1
1 + 1 = 3a
2 = 3a
2/3 = a
=> a = 2/3
Bài này bạn lần lượt thay x vào rồi tìm a thôi.
\(x=\dfrac{7}{3a-1}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{7}{3a-1}=-1\\\dfrac{7}{3a-1}=7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3a-1=-7\\3a-1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3a=-6\\3a=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=-2\\a=\dfrac{2}{3}\end{matrix}\right.\)