chứng minh giá trị của biểu thức không phụ thuộc vào biến x, y:
x(3x+12)-(7x-20)-x^2(2x+3)+x(2x^2-5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh giá trị của biểu thức không phụ thuộc vào biến x, y:
x(3x+12)-(7x-20)-x^2(2x+3)+x(2x^2-5)
a.=3x2+12x-7x+20+2x3-3x2-2x3-5x
=(3x2-3x2)+(12x-7x-5x)+(2x3-2x3)+20
=20
b.=6x-3-5x+15+18x-24-19x
=(6x-5x+18x-19x)+(-3+15-24)
=-12
a) x(3x + 12) - (7x - 20) + x2(2x - 3) - x(2x2 + 5)
<=> x.3x + x.12 - 7x - 20 + x2.2x + x2.(-3) + (-x).2x2 + (-x).5
<=> 3x2 + 12x - 7x - 20 + 2x3 - 3x2 - 2x3 - 5x
<=> (3x2 - 3x2) + (12x - 7x - 5x) - 20 + (2x3 - 2x3)
<=> 0 + 0 - 20 + 0
<=> -20
=> biểu thức không phụ thuộc vào giá trị của biến
b) 3(2x - 1) - 5(x - 3) + 6(3x - 4) - 19x
<=> 3.2x + 3.(-1) + (-5).x + (-5).(-3) + 6.(3x) + 6.(-4) - 19x
<=> 6x - 1 - 5x + 15 + 18x - 24 - 19x
<=> (6x - 5x + 18x - 19x) + (-1 + 15 - 24)
<=> 0 - 10
<=> -10
=> biểu thức không phụ thuộc vào giá trị của biến
dễ ẹc
\(x\left(3x+12\right)-\left(7x-20\right)+x^2\left(2x-3\right)-x\left(2x^2+5\right)\)
\(=3x^2+12x-7x+20+2x^3-3x^2-2x^3-5x\)
\(=\left(3x^2-3x^2\right)+\left(12x-7x-5x\right)+\left(2x^3-2x^3\right)+20\)
\(=0+0+0+20\)
\(=20\)
Câu 2:
a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)
\(=-2x^2+10x+3x-3+2x^2-13x\)
\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)
\(=0+0-3\)
\(=-3\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)
\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)
\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)
\(=0+0+0+0\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Câu 4:
a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)
\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)
\(A=-7\)
Thay \(x=-2\) vào biểu thức A ta có:
\(A=-7\)
Vậy giá trị của biểu thức A là -7 tại \(x=-2\)
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)
\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(B=-x\)
Thay \(x=14\) vào biểu thức B ta được:
\(B=-14\)
Vậy giá trị của biểu thức B tại \(x=14\) là -14
a) `x (3x - 5) - x^2 (x - 4) + x (x^2 - 7x) - 10 + 5x`
`= 3x2 - 5x - x3 + 4x2 + x3 - 7x2 - 10 + 5x`
`= (3x2 + 4x2 - 7x2) + (x3 - x3) + (5x - 5x) - 10`
`= -10`
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến.
b) `(x + 1) (x2 + x + 1) - x2 (x + 2) - 2x + 5`
`= x3 + x2 + x + x2 + x + 1 - x^3 - 2x2 - 2x + 5`
`= (x^3 - x^3) + (x^2 + x^2 - 2x^2) + (x + x - 2x) + (1 + 5)`
`= 6`
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến.
Bài 2:
a: (2x-1)(x2+5x-4)
\(=2x^3+10x^2-8x-x^2-5x+4\)
\(=2x^3+9x^2-13x+4\)
b: \(=-\left(10x^2+15x-8x-12\right)\)
\(=-\left(10x^2+7x-12\right)\)
\(=-10x^2-7x+12\)
c: \(=7x^2-28x-\left(14x^3-7x^2+28x+3x^2-3x+12\right)\)
\(=7x^2-28x-14x^3+4x^2-25x-12\)
\(=-14x^3+11x^2-53x-12\)
mình sửa lại câu b nha
3(2x-1)-5(x-3)+6(3x-4)-19x
=6x-3-5x+15+18x-24-19x
=(6x-5x+18x-19x)-(3-15+24)
=12
a) x(3x+12)-(7x-20)+ x2(2x-3)-x(2x2+5)
=3x2+12x-7x+20+2x3-3x2-2x3-5x
= (3x2-3x2)+(12x-7x-5x)+(2x2-2x2)+20
=20
Sau khi rút gọn thì giá trị của bt là 20. Vì vậy giá trị của bt trên không phụ thuộc vào giá trị của biến
b) 3(2x-1)-5(x-3)+6(3x-4)-19x
=6x-3-5x-15+18x-24-19x
=(6x-5x+18x-19x)-(3+15+24)
= -42
KL thì tương tự giông câu a
\(x\left(3x+12\right)-\left(7x-20\right)-x^2\left(2x+3\right)+x\left(2x^2-5\right)\\ =3x^2+12x-7x+20-2x^3-3x^2+2x^3-5x\\ =20\)
Ta có biểu thức trên:
\(=3x^2+12x-7x+20-2x^3-3x^2+2x^3-5x\)
\(=\left(2x^3-2x^3\right)+\left(3x^2-3x^2\right)+\left(12x-7x-5x\right)+20\)
\(=0+0+0+20=20\)
Vậy giá trị biểu thức trên luôn bằng 20 với mọi x, y, cũng có nghĩa là giá trị biểu thức trên không phụ thuộc vào biến x, y (đfcm)