Bài 1: Tìm 3 stn chẵn liên tiếp biết tích của 2 số sau lớn hơn tích của 2 số đầu là 192.
Bài 2: C/m rằng biểu thức n(n+5)-(n-3)(n+2) luôn chia hết cho 6 vs mọi n là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có n(n+5)-(n-3)(n+2)
= n2+5n-(n2-n-6)
=n2+5n-n2+n+6
= 6n-6
=6(n-1)
=> 6(n-1) chia hết cho 6
hay n(n+5)-(n-3)(n+2) cũng chia hết cho 6
nhớ k giùm mình nha
Mong các bạn sớm giải ra, mình cần cho buổi chiều ngày mai gấp, nếu bạn nào giải được mình sẽ k đúng cho và kết bạn vs bạn đó nha! Cảm phiền các bạn !!!!!!! Giúp mình với nha!
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
1. n(n+5)-(n-3)(n+2) = \(n^2+5n-\left(n^2-n-6\right)=6n+6=6\left(n+1\right)⋮6\) luôn chia hết cho 6 với mọi n thuộc Z
2. Gọi các số tự nhiên chẵn liên tiếp lần lượt là 2x,2x+2,2x+4 (\(x\in N^{\text{*}}\))
Theo đề bài : \(\left(2x+2\right)\left(2x+4\right)-2x\left(2x+2\right)=208\Leftrightarrow4\left(x+1\right)\left(x+2\right)-4x\left(x+1\right)=208\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-x\left(x+1\right)=52\Leftrightarrow x=50\)(TM)
Vậy 3 số tự nhiên chẵn liên tiếp là 50 , 52 , 54
Bài 2 :
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6=6n+6\)
Với mọi \(n\in Z\) thì \(6n+6\) luôn chia hết cho 6 ( đpcm )
gọi 3 số tự nhiên chẵn liên tiếp là 2a-2;2a;2a+2(a là số tự nhiên lớn hơn 0)
theo đề bài, ta có:
\(2a.\left(2a+2\right)-2a.\left(2a-2\right)=192\\ 4a^2+4a-4a^2+4a=192\\ 8a=192\Rightarrow a=\dfrac{192}{8}=24\left(thõa\:mãn\right)\)
vậy 3 số cần tìm là :46;48;50
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-n^2+n+6\\ =6n+6=6\left(n+1\right)⋮6\)
vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)⋮6\:\forall x\in Z\)