hepl me
\(\dfrac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^83+3^{10}+3^{12}+3^{14}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{4^{10}+8^4}{4^5+8^6}\)
\(A=\dfrac{2^{20}+2^{12}}{2^{10}+2^{18}}=\dfrac{\left(2^8+1\right).2^{12}}{\left(1+2^8\right).2^{10}}\)
\(=\dfrac{\left(256+1\right).2^2}{1+256}=\dfrac{257.2^2}{257}=2^2\)
\(B=\dfrac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^8+3^{10}+3^{12}+3^{14}}\)
\(=\dfrac{1+81+6561+3^{12}}{1+9+81+729+6561+59049+3^{12}+3^{14}}\)
\(=\dfrac{6643+3^{12}}{91+719+6561+59049+3^{12}+3^{14}}\)
\(=\dfrac{6643+3^{12}}{66430+3^{12}+3^{14}}\)
P/s : Nổi hứng lên thì lm chứ k bt đúng hay sai :V
Biến đổi mẫu ta có
30 +32 +34 +36 +38 +310 +312+314
= 30 +32 +(30.34 +32.34) + (30.38+32.38) + (30.312+32.312) (Vì 30=1)
= (30+32)(1+34+38+312)
Biểu thức đổi thành \(\dfrac{1+3^4+3^8+3^{12}}{\left(1+9\right)\left(1+3^4+3^8+3^{12}\right)}\)= \(\dfrac{1}{10}\)
a) Ta có: \(\dfrac{-5}{7}\left(\dfrac{14}{5}-\dfrac{7}{10}\right):\left|-\dfrac{2}{3}\right|-\dfrac{3}{4}\left(\dfrac{8}{9}+\dfrac{16}{3}\right)+\dfrac{10}{3}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{-5}{7}\cdot\dfrac{3}{2}\cdot\dfrac{21}{10}-\dfrac{3}{4}\cdot\dfrac{56}{3}+\dfrac{10}{3}\cdot\dfrac{8}{15}\)
\(=\dfrac{-9}{4}-14+\dfrac{16}{9}\)
\(=\dfrac{-1621}{126}\)
b) Ta có: \(\dfrac{17}{-26}\cdot\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)
\(=\dfrac{-17}{26}\cdot\dfrac{13}{17}\cdot\dfrac{-3}{2}-\dfrac{20}{3}\cdot\dfrac{3}{20}+\dfrac{2}{3}\cdot\dfrac{-33}{10}\)
\(=\dfrac{3}{4}-1-\dfrac{11}{5}\)
\(=-\dfrac{49}{20}\)
1) \(\left(+15\right)+\left(+17\right)=15+17=32\)
2) \(\left(-3\right)+\left(-7\right)=-3-7=-\left(3+7\right)=-10\)
3) \(\left(-25\right)+\left(+4\right)=-25+4=-\left(25-4\right)=-21\)
4) \(\left(-6\right)+\left(-54\right)=-6-54=-\left(6+54\right)=-60\)
5) \(\left(-15\right)+20=20-15=5\)
6) \(\left(-5\right)+8+7+5\)
\(=\left(-5+5\right)+\left(8+7\right)\)
\(=15\)
7) \(\left(-8\right)+\left(-11\right)+\left(-2\right)\)
\(=\left[\left(-8\right)+\left(-2\right)\right]+\left(-11\right)\)
\(=\left(-10\right)+\left(-11\right)\)
\(=-21\)
8) \(15+\left(-5\right)+\left(-14\right)+\left(-16\right)\)
\(=\left[15+\left(-5\right)\right]+\left[\left(-14\right)+\left(-16\right)\right]\)
\(=10+\left(-30\right)\)
\(=-20\)
9) \(\left(-20\right)+\left(-14\right)+3+\left(-86\right)\)
\(=\left[\left(-20\right)+3\right]+\left[\left(-14\right)+\left(-86\right)\right]\)
\(=\left(-17\right)+\left(-100\right)\)
\(=-117\)
10) \(\left(-136\right)+123+\left(-264\right)+\left(-83\right)+240\)
\(=\left[\left(-136\right)+\left(-264\right)\right]+\left[123+\left(-83\right)\right]+240\)
\(=\left(-400\right)+40+240\)
\(=\left(-360\right)+240\)
\(=-120\)
11) \(\left(-596\right)+2001+1999+\left(-404+189\right)\)
\(=\left(-596\right)+2001+1999-404+189\)
\(=\left[\left(-596\right)-404\right]+\left(2001+189\right)+1999\)
\(=\left(-1000\right)+2190+1999\)
\(=1190+1999\)
\(=3189\)
12) \(314+\left(-153\right)+64+121+\left(-247\right)+218\)
\(=\left(314+64+121\right)+\left[\left(-153\right)+\left(-247\right)\right]+218\)
\(=\left(378+121\right)+\left(-400\right)+218\)
\(=499-400+218\)
\(=99+218\)
\(=317\)
\(\text{#}Toru\)
\(a,\dfrac{13}{14}\cdot\dfrac{-7}{8}+\dfrac{-3}{2}\)
\(=-\dfrac{13}{16}+\dfrac{-3}{2}\)
\(=-\dfrac{13}{16}+\dfrac{-24}{16}\)
\(=-\dfrac{37}{16}\)
\(b,\dfrac{5}{17}+\dfrac{-15}{34}\cdot\dfrac{2}{5}\)
\(=\dfrac{5}{17}+\dfrac{-3}{17}\)
\(=\dfrac{2}{17}\)
\(c,\dfrac{1}{5}:\dfrac{1}{10}-\dfrac{1}{3}\cdot\left(\dfrac{6}{5}-\dfrac{2}{4}\right)\)
\(=2-\dfrac{1}{3}\cdot\dfrac{7}{10}\)
\(=2-\dfrac{7}{30}\)
\(=\dfrac{53}{30}\)
\(d,\dfrac{-3}{4}:\left(\dfrac{12}{-5}-\dfrac{-7}{10}\right)\)
\(=\dfrac{-3}{4}:\dfrac{-17}{10}\)
\(=\dfrac{15}{34}\)
A = \(\frac{2}{3}+\frac{5}{6}:6-\frac{1}{8}.\left(-3\right)^2\)
A = \(\frac{2}{3}+\frac{5}{6}.\frac{1}{6}-\frac{1}{8}.9\)
A = \(\frac{2}{3}+\frac{5}{36}-\frac{9}{8}\)
A =\(\frac{-23}{72}\)
\(\dfrac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^8+3^{10}+3^{12}+3^{14}}\)
\(=\dfrac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)+\left(3^2+3^6+3^{10}+3^{14}\right)}\)
\(=\dfrac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)+3^2\left(1+3^4+3^8+3^{12}\right)}\)
=\(\dfrac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)\left(1+3^2\right)}\)
=\(\dfrac{1}{1+3^2}=\dfrac{1}{10}\)
Chúc Bạn Học Tốt!!!
giống mink làm vãi