1, Chứng ming rằng tổng các lập phương của ba số nguyên tố liên tiếp thì chia hết cho 9
2, Chứng minh rằng nếu tổng các lập phương của ba số nguyên chia hết cho 9 tồn tại 1 trong 3 số đó là bội của 3.
3, a, cmr nếu số tự nhiên a không chia hết cho 7 thì: a6-1 chia hết cho 7
b, cmr nếu n là lập phương của 1 số tự nhiên thì: (n-1).n.(n+1) chia hết cho 504
Gíup mk nha, mai hk rồi!!!
1
Gọi 3 số nguyên liên tiếp là n-1 , n . n+1
(n-1)3 +n3+(n+1)3
= n3 - 3n2+3n -1 + n3 + n3 +3n2 +3n +1
= 3n3 + 6n
= 3n3- 3n + 9n
= 3 (n3-n) + 9n chia hết cho 9
2)
Có a3+b3+c3 chia hết cho 9 (1)
Giả sử a,b,c đều ko chia hết cho 3 (BS3\(\pm1\))
\(\Rightarrow\) lập phương mỗi số dạng BS9 \(\pm1\)
\(\Rightarrow a^3+b^{3^{ }}+c^3=BS9+r_1+r_2+r_3\)
Có r1,r2,r3 \(\in\left(1;-1\right)\)
Không có cách nào để r1,r2,r3 nào để tổng chia hết cho 9 trái với (1)
Vậy tồn tại 1 trong 3 số a,b,c là bội của 3