K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2017

Lời giải:

Ta có \(y=\frac{x+m}{x-1}\Rightarrow y'=\frac{-(m+1)}{(x-1)^2}\)

Vì hàm \(y'=0\) không có nghiệm nên giá trị cực trị của hàm số sẽ được xác định khi \(x=2\) hoặc \(x=4\)

Nếu \(y_{\min}=3\) khi \(x=2\), tức là \(y(2)=2+m=3\Rightarrow m=1\)

\(\Rightarrow y'=\frac{-2}{(x-1)^2}<0\) , hàm nghịch biến nên \(y(2)> y(4)\), do đó $y(2)$ không thể là \(y_{\min}\) được (loại)

Nếu \(y_{\min}=3\) khi \(x=4\), tức là \(y(4)=\frac{4+m}{3}=3\Rightarrow m=5\)

\(\Rightarrow y'=\frac{-6}{(x-1)^2}<0\) , hàm nghịch biến nên \(y(2)>y(4)\), do đó \(y(4)\) đúng là \(y_{\min}\) (thỏa mãn)

Vậy \(m=5\)

Để hiểu cho rõ thì bạn nên vẽ bảng biến thiên ra.

NV
17 tháng 7 2021

Với \(m=-2\) ko thỏa mãn

Với \(m\ne-2\) hàm \(f\left(x\right)\) là bậc nhất trên bậc nhất nên luôn đơn điệu trên khoảng đã cho

\(\Rightarrow\) min max rơi vào 2 đầu mút

\(f\left(2\right)=m+4\) ; \(f\left(3\right)=\dfrac{m+6}{2}\)

\(\Rightarrow\left|m+4-\dfrac{m+6}{2}\right|=2\Leftrightarrow\)

\(\Leftrightarrow m+2=\pm4\Rightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\)

17 tháng 7 2021

Tại sao m = -2 lại không thỏa mãn ạ?

20 tháng 12 2021

D

20 tháng 12 2021

Chọn D

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

=>Đường thẳng y=2m+3 là đường tiệm  cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)

Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3

=>2m=0

=>m=0

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

=>\(m^2-3m=-2\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>m=1 hoặc m=2

13 tháng 7 2024

Đúng