Xác định các sô hữu tỉ a và b để đa thức \(x^3+ax+b\) chia hết cho đa thức \(x^2+x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phạm Thị Quỳnh Tú - Toán lớp 8 - Học toán với OnlineMath
Tham khảo
Vì \(x^{2017}-ax^{2016}+ax-1⋮\left(x-1\right)^2\Rightarrow x^{2017}-ax^{2016}+ax-1=\left(x-1\right)^2.Q\left(x\right)\text{đúng}\forall x\)
Thay x = 1 vào đẳng thức trên, ta có:
1 - a + a - 1 = 0 (đúng) => Có vô số số hữu tỉ a thoả mãn để bài
do đa thức bị chia có bậc 3, đa thức chia có bậc 2 nên thương là một nhị thức bậc nhất, hạng tử bậc nhất là\(x^3:x^2=x\)
Gọi thương là \(x+c\), ta có:
\(x^3+ax+b=\left(x^2+x-2\right)\left(x+c\right)\) \(^1\)
=>\(x^3+ax+b=x^3+\left(c+1\right).x^2+\left(c-2\right)x-2c\) \(^2\)
từ 1 và 2, suy ra:
\(\left\{{}\begin{matrix}c+1=0\\c-2=a\\-2c=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=-3\\b=2\end{matrix}\right.\)
Vậy với a= -3 ; b=2 thì \(x^3+ax+b\) chia hết cho \(x^2+x-2\), thương là x-1
Lời giải:
Đặt $f(x)=ax^3+bx^2-11x+10$
$x^2+x-2=(x-1)(x+2)$
Do đó để $f(x)\vdots x^2+x-2$ thì $f(x)\vdots x-1$ và $f(x)\vdots x+2$
$\Leftrightarrow f(1)=f(-2)=0$ (theo định lý Bê-du về phép chia đa thức)
$\Leftrightarrow a+b-1=-8a+4b+32=0$
$\Leftrightarrow a=3; b=-2$
Bài 1 :
x2 - x - 2 = x2 - 2x + x - 2
= x( x - 2 ) + ( x - 2 ) = ( x - 2 ) ( x + 1 )
Để x3 + ax + b ⋮ ( x - 2 ) ( x + 1) thì :
x3 + ax + b = ( x - 2 ) ( x + 1 ) . Q
Vì đẳng thức trên đúng với mọi x, do đó :
+) đặt x = 2 ta có :
23 + 2a + b = ( 2 - 2 ) ( 2 + 1 ) . Q
8 + 2a + b = 0
2a + b = -8
b = -8 - 2a (1)
+) đặt x = -1 ta có :
(-1)3 + (-1)a + b = ( -1 - 2 ) ( -1 + 1 ) . Q
-1 - a + b = 0
-a + b = 1 (2)
Thay (1) vào (2) ta có :
-a - 8 - 2a = 1
<=> -3a = 9
<=> a = -3
=> b = 1 + (-3) = -2
Vậy a = -3; b = -2
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Đa thức bị chia có bậc ba, đa thức chia có bậc hai nên thương là một nhị thức bậc nhất, hạng tử bậc nhất là \(x^3:x^2=x\)
Gọi thương là x + c, ta có:
\(x^3+ax+b=\left(x^2+x-2\right)\left(x+c\right)\)
nên \(x^{ }+ax+b=x^3+\left(c+1\right)x^2+\left(c-2\right)x-2c\)
Hai đa thức bằng nhau nên:
\(\left\{{}\begin{matrix}c+1=0\\c-2=a\\-2c=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=-3\\b=2\end{matrix}\right.\)
Vậy với a = -3; b = 2 thì \(x^3+ax+b\) chia hết cho \(x^2+x-2\) , thương là x - 1
Ta có : \(\left(x^3+ax+b\right)⋮\left(x^2+x-2\right)\)
Gọi ( x+k) là thương của đa thức trên .Ta có :
\(\left(x^3+ax+b\right)=\left(x+k\right)\left(x^2+x-2\right)\)
\(=>x^3+ax+b=x^3+kx^2+x^2+kx-2x-2k\)
\(=>x^3+ax+b=x^3+x^2\left(k+1\right)+x\left(k-2\right)-2k\)
Đồng nhất các hệ số ta có :
\(\left\{{}\begin{matrix}k+1=0\\k-2=a\\b=\left(-2k\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=\left(-1\right)\\a=\left(-3\right)\\b=2\end{matrix}\right.\)
Vậy : a= (-3) : b= 2