K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

A B C H

trong tam giac AHC co \(AH=AC\cdot\sin C=35\cdot\sin50\approx26,8\)

ap dung dl pitago vao AHC  ta tinh dc \(HC=AC^2-AH^2\approx22,5\)

tg tu trong tam giac ABH co \(BH=\cot60\cdot26,8\approx15,5\)

\(\Rightarrow BC=BH+CH=38\)

\(\Rightarrow SABC=\frac{1}{2}BC\cdot AH=509,2\)

16 tháng 8 2016

A B C H K

Từ A kẻ đường cao AH vuông góc với BC , từ B kẻ đường cao BK vuông góc với AC

=> AH = sinC x AC = sin 500 x 35 = a 

Ta có : AB = \(\frac{AH}{sinB}=\frac{a}{sinB}=b\) 

BK = \(sinA\times AB=sin\left(180^o-60^o-50^o\right)=sin70^o\times b\)= c

=> S . ABC = 1/2AC x BK = 1/2 x 35 x c =..........

a,b,c mình đặt thay cho độ dài AH , AB, BK

17 tháng 8 2016

Sao bạn không tính hẳn AH, AB, BK mà phải kí hiệu a, b,c vậy?

15 tháng 8 2016

Kẻ AH vuông góc với BC

Trong tam giác vuông AHC ta có:

\(cosC=\frac{HC}{AC}\Rightarrow HC=cosC.AC=cos50.35\approx22cm\)

\(\Rightarrow AH=\sqrt{AC^2-HC^2}=\sqrt{35^2-22^2}=\sqrt{741}cm\)

Trong tam giác vuông AHB ta có:

\(sinB=\frac{AH}{AB}\Rightarrow AB=\frac{AH}{sinB}=\frac{\sqrt{741}}{sin60}=2\sqrt{247}cm\)

\(\Rightarrow HB=\sqrt{AB^2-AH^2}=\sqrt{\left(2\sqrt{247}\right)^2-741}=\sqrt{247}cm\)

Vậy \(S_{ABC}=\frac{AH\left(HB+HC\right)}{2}=\frac{\sqrt{741}.\left(\sqrt{247}+22\right)}{2}\approx513cm\)

23 tháng 6 2021

Gút chóp bạn

 

18 tháng 6 2019

A B C H 35 50 o 60 o

Ta có \(CH=AC.cos\widehat{C}=35.cos50^o\)

         \(AH=AC.sin\widehat{C}=35.sin50^o\)

         \(BH=AH.cot\widehat{B}=35.sin50^o.cot60^o\)

\(\Rightarrow BC=BH+CH=35.cos50^o+35.sin50^o.cot60^o\)

\(\Rightarrow S_{ABC}=\frac{AH.BC}{2}=\frac{35.sin50^o\left(35.cos50^o+35.sin50^o.cot60^o\right)}{2}\)

11 tháng 9 2021

Kẻ AH vuông góc với BC

Trong tam giác vuông AHC ta có:

cosC=HC/AC⇒HC=cosC.AC=cos50.35≈22cm

⇒AH=√AC^2−HC^2=√35^2−22^2=√741cm

Trong tam giác vuông AHB ta có:

sinB=AH/AB⇒AB=AH/sinB=√741/sin60=2√247cm

⇒HB=√AB^2−AH^2=√(2√247)^2−741=√247cm

Vậy SABC=AH(HB+HC)/2=√741.(√247+22)/2≈513\(cm^2\)

NV
10 tháng 9 2021

1.

\(A+B+C=180^0\Rightarrow A=180^0-\left(B+C\right)=70^0\)

Kẻ đường cao BD

Trong tam giác vuông ABD:

\(cotA=\dfrac{AD}{BD}\Rightarrow AD=BD.cotA\)

Trong tam giác vuông BCD:

\(cotC=\dfrac{CD}{BD}\Rightarrow CD=BD.cotC\)

\(\Rightarrow AD+CD=BD.cotA+BD.cotC\)

\(\Rightarrow AC=BD.\left(cotA+cotC\right)\)

\(\Rightarrow BD=\dfrac{AC}{cotA+cotC}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC=\dfrac{1}{2}.\dfrac{AC^2}{cotA+cotC}=\dfrac{35^2}{2\left(cot70^0+cot50^0\right)}\approx509,1\left(cm^2\right)\)

NV
10 tháng 9 2021

Hình vẽ bài 1:

undefined

NV
27 tháng 7 2021

Kẻ đường cao AH ứng với BC

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AH=AC.sinC\)

\(cosC=\dfrac{CH}{AC}\Rightarrow CH=AC.cosC\)

Trong tam giác vuông ABH:

\(tanB=\dfrac{AH}{BH}\Rightarrow BH=\dfrac{AH}{tanB}=\dfrac{AC.sinC}{tanB}\)

Do đó:

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH\left(BH+CH\right)=\dfrac{1}{2}.4,5.sin55^0.\left(\dfrac{4,5.sin55^0}{tan60^0}+4,5.cos55^0\right)\approx8,68\left(cm^2\right)\)

NV
27 tháng 7 2021

undefined