Cho tam giác ABC vuông tại C.Trên AB lấy Đ sao cho AD=AB.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E , AE cắt CD tại I
a, cm AE là tia phân giác của góc CAB
b, AD là đường trung trực của CD
c, So sánh CD và BC
d, M là trung điểm của BC, DM cắt BI tại G , CG cắt DB tại K. Cm K là trung điểm của DB.
Sửa đề: AD=AC
a: Xét ΔACE và ΔADE có
AC=AD
\(\widehat{CAE}=\widehat{DAE}\)
AE chung
DO đó: ΔACE=ΔADE
Suy ra: \(\widehat{CAE}=\widehat{DAE}\)
hay AE là phân giác của góc CAB
b: Ta có: AC=AD
EC=ED
DO đó: AE là đường trung trực của CD
c: ta có: AE là đường trung trực của CD
nên AE\(\perp\)CD tại I
=>ΔAID vuông tại I
=>\(\widehat{ADI}< 90^0\)
=>\(\widehat{CDB}>90^0\)(Do góc ADI và góc CDB là hai góc kề bù)
Xét ΔCDB có \(\widehat{CDB}>90^0\)
nên BC là cạnh lớn nhất
=>BC>CD