bài 1:tìm x
\(^{x^2}\)-0.25=0
\(\dfrac{8}{2x}\)=2
(2x-1)\(^{^{ }3}\)=8
(x-2)\(^{^{ }2}\)=16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
5: =>4x^2-1/9=0
=>(2x-1/3)(2x+1/3)=0
=>x=1/6 hoặc x=-1/6
6: =>x-1=2
=>x=3
7:=>(2x-1)^3=-27
=>2x-1=-3
=>2x=-2
=>x=-1
8: =>1/8(x-1)^3=-125
=>(x-1)^3=-1000
=>x-1=-10
=>x=-9
3: =>(5x-5)^2-4=0
=>(5x-7)(5x-3)=0
=>x=3/5 hoặc x=7/5
4: =>(5x-1)^2=0
=>5x-1=0
=>x=1/5
1: =>(3x-1)(2x-1)=0
=>x=1/3 hoặc x=1/2
2: =>x^2(2x-3)-4(2x-3)=0
=>(2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>x=3/2;x=2;x=-2
`@` `\text {Answer}`
`\downarrow`
`1,`
\(2x\left(3x-1\right)+1-3x=0\)
`<=> 2x(3x - 1) - 3x + 1 = 0`
`<=> 2x(3x - 1) - (3x - 1) = 0`
`<=> (2x - 1)(3x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy, `S = {1/2; 1/3}`
`2,`
\(x^2\left(2x-3\right)+12-8x=0\)
`<=> x^2(2x - 3) - 8x + 12 =0`
`<=> x^2(2x - 3) - (8x - 12) = 0`
`<=> x^2(2x - 3) - 4(2x - 3) = 0`
`<=> (x^2 - 4)(2x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `S = {+-2; 3/2}`
`3,`
\(25\left(x-1\right)^2-4=0\)
`<=> 25(x-1)(x-1) - 4 = 0`
`<=> 25(x^2 - 2x + 1) - 4 = 0`
`<=> 25x^2 - 50x + 25 - 4 = 0`
`<=> 25x^2 - 15x - 35x + 21 = 0`
`<=> (25x^2 - 15x) - (35x - 21) = 0`
`<=> 5x(5x - 3) - 7(5x - 3) = 0`
`<=> (5x - 7)(5x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy, `S = {7/5; 3/5}`
`4,`
\(25x^2-10x+1=0\)
`<=> 25x^2 - 5x - 5x + 1 = 0`
`<=> (25x^2 - 5x) - (5x - 1) = 0`
`<=> 5x(5x - 1) - (5x - 1) = 0`
`<=> (5x - 1)(5x-1)=0`
`<=> (5x-1)^2 = 0`
`<=> 5x - 1 = 0`
`<=> 5x = 1`
`<=> x = 1/5`
Vậy,` S = {1/5}.`
a/ \(\dfrac{3-x}{12}=\dfrac{2x+2}{8}\)
\(< =>\dfrac{2\left(3-x\right)}{24}=\dfrac{3\left(2x+2\right)}{24}\)
\(< =>6-2x-6x-6=0\)
\(< =>-8x=0\)
\(< =>x=0\)
Vậy tập nghiệm.....
b/ \(\dfrac{x+3}{x-4}+\dfrac{x-3}{x+4}=\dfrac{2\left(x^2+12\right)}{x^2-16}\)
Tìm ĐKXĐ của pt là: \(x\ne\pm4\) (làm tắt, bạn làm rõ ra nhé)
\(\dfrac{x+3}{x-4}+\dfrac{x-3}{x+4}=\dfrac{2\left(x^2+12\right)}{x^2-16}\)
\(< =>\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(x-3\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{2\left(x^2+12\right)}{\left(x+4\right)\left(x-4\right)}\)
\(< =>x^2+3x+4x+12+x^2-3x-4x+12-2x^2-24=0\)
\(< =>0x=0\)
=> x có vô số nghiệm
Vậy ....
a) `(3-x)/12=(2x+2)/8`
`<=> (3-x)/12 =(x+1)/4`
`<=> 3-x=3(x+1)`
`<=>3-x=3x+3`
`<=> x=0`
Vậy `S={0}`.
b) ĐK: `x \ne \pm 4`
`(x+3)/(x-4)+(x-3)/(x+4)=(2(x^2+12))/(x^2-16)`
`<=> (x+3)(x+4)+(x-3)(x-4)=2(x^2+12)`
`<=> x^2+7x+12+x^2-7x+12=2x^2+24`
`<=> 0x=0`
Vậy PT có nghiệm với mọi x thỏa mãn điều kiện.
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
\(x^2-0,25=0\)
\(\Leftrightarrow x^2-0,5^2=0\)
\(\Leftrightarrow x-0,5=0\)
\(\Leftrightarrow x=0+0,5\)
\(\Leftrightarrow x=0,5\)
b.
\(\dfrac{8}{2x}=2\Leftrightarrow2x=\dfrac{8}{2}\Rightarrow x=4:2=2\)
c.
\(\left(2x-1\right)^3=8\)
\(\Rightarrow\left(2x-1\right)^3=2^3\)
\(\Rightarrow2x-1=2\)
\(\Rightarrow2x=2+1\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\)
d.
\(\left(x-2\right)^2=16\)
\(\Rightarrow\left(x-2\right)^2=4^2\)
\(\Rightarrow x-2=4\)
\(\Rightarrow x=4+2\)
\(\Rightarrow x=6\)
Chúc bạn học tốt!!!!
\(x^2-0,25=0\)
\(\Rightarrow x^2=0,25\)
\(\Rightarrow x=0,5\)
b. \(\dfrac{8}{2x}=2\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
c. \(\left(2x-1\right)^3=8\)
\(\left(2x-1\right)^3=2^3\)
\(\Rightarrow2x-1=2\)
\(\Rightarrow x=\dfrac{3}{2}\)
d. \(\left(x-2\right)^2=16\)
\(\left(x-2\right)^2=\pm4^2\)
\(\Rightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)