1.Tìm hai chữ số tận cùng của:
A= \(2^{2015}+2^{2016}+2^{2017}\)
2. Tìm chữ số hàng chục: \(23^{2017}\)
Các bạn ơi giúp mk với.( bài này là giải casio nhé).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n luôn có tận cùng là 2. Vậy cái tổng trên có tận cùng là 6. Còn 2 chữ số tận cùng thì chỉ nằm trong 16;26;...;96. Có 9 phương án bạn giải toán casio thì thử từng cái một xem cái nào đúng.
2n luôn có tận cùng là 2. Vậy cái tổng trên có tận cùng là 6. Còn 2 chữ số tận cùng thì chỉ nằm trong 16;26;...;96. Có 9 phương án bạn giải toán casio thì thử từng cái một xem cái nào đúng nhé !
a.Ta có:
\(5^3=125\)
\(5^5=3125\)
\(5^7=78125\)
....
\(5^{2n+1}=\left(...125\right)\)
\(\Rightarrow5^{2017}=5^{1008.2+1}=\left(...125\right)\)
"=" là đồng dư
\(2017^3=3\left(mod10\right)=>\left(2017^3\right)^{672}=3^{672}\left(mod10\right)=\left(3^2\right)^{336}=\left(-1\right)^{336}=1\left(mod10\right)\)
vậy 20172016 tận cùng = 1
a) Số có tận cùng là 9 khi gấp các số mũ lên có thể có các chữ số tận cùng là: 9;1 => chỉ có thể là 2 chữ số tận cùng
Ta lấy 200:2 =100=> số này chia hết cho 2 => Chữ số tận cùng của 1979^200 là 1.
b) Các chữ số tận cùng có thể có số có mũ có tận cùng là 7 là: 7;9;3;1
Ta lấy 2007 : 4 dư 3
Vậy số tận cùng là 3
c) Số tận cùng là 6
Số đó là : 583
Kick mik nha, mik kick lại !!!!!!!!!!!!!!!!!!!!!!!!
1) Tìm 2 chữ số tận cùng của \(A=2^{2015}+2^{2016}+2^{2017}\)
Ta sẽ tìm 2 chữ số của từng số hạng, rồi cộng các tổng
*) 2 chữ số tận cùng của \(2^{2015}\) có nghĩa là \(2^{2015}:100\)
Ta có: \(2^{10}\equiv24\left(mod100\right)\)
\(\left(2^{10}\right)^5\equiv24^5\equiv24\left(mod100\right)\)
\(\left(2^{50}\right)^4\equiv24^4\equiv76\left(mod100\right)\)
\(\left(2^{200}\right)^5\equiv76^5\equiv76\left(mod100\right)\)
\(\left(2^{1000}\right)^2\equiv76^2\equiv76\left(mod100\right)\)
=> \(2^{2000}\cdot2^{15}\equiv76\cdot68\equiv5168\left(mod100\right)\)
=> 2 chữ số tận cùng của 22015 là 68 (1)
Tương tự với 22016 và 22017
*) => \(2^{2000}\cdot2^{16}\equiv76\cdot36\equiv2736\left(mod100\right)\)
=> 2 chữ số tận cùng của 22016 là 36 (2)
*) \(2^{2000}\cdot2^{17}\equiv76\cdot72\equiv5472\left(mod100\right)\)
=> 2 chữ số tận cùng của \(2^{2017}\) là 72 (3)
Từ (1), (2) , (3) ta có:
\(A=2^{2015}+2^{2016}+2^{2017}\equiv68+36+72\equiv176\left(mod100\right)\)
Vậy 2 chữ số tận cùng của A là 76
Bài 2: Bài này thì dễ hơn, bn cx tìm đồng dư của số đó với 100 là ra! Nếu cần lời giải chi tiết thì nói vs mk
e camon!!!!