K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

AH
Akai Haruma
Giáo viên
9 tháng 6

Câu 1:

Ta có: $2002\vdots 2\Rightarrow 2002^{2003}\vdots 2$

$2003\not\vdots 2\Rightarrow 2003^{2004}\not\vdots 2$

$\Rightarrow 2002^{2003}+2003^{2004}\not\vdots 2$

 

AH
Akai Haruma
Giáo viên
9 tháng 6

Câu 2:

$3^2\equiv -1\pmod 5$

$\Rightarrow 3^{4n}=(3^2)^{2n}\equiv (-1)^{2n}\equiv 1\pmod 5$

$\Rightarrow 3^{4n}-6\equiv 1-6\equiv 0\pmod 5$

$\Rightarrow 3^{4n}-6\vdots 5$

10 tháng 5 2022

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 tháng 2 2017

a.n + 7 chia hết cho n+2

=> n + 2 + 5 chia hết cho n+2

=> 5 chia hết cho n+2

=> n + 2 thuộc tập hợp các số : 5;-5;1;-1

=> n thuộc tập hợp các số : 3;-7;-1;-3

b.9-n chia hết cho n-3

=> 6 - n - 3 chia hết cho n-3

=> 6 chia hết cho n-3

=> n -3 thuộc tập hợp các số : 1;-1;6;-6

=> n thuộc tập hợp các sô : 4;2;9;-3

Giải hết ra dài lắm

k mk nha

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

2 tháng 1 2017

a, 1 hoặc 5

2 tháng 1 2017

a) vi n chia het cho n nen n+5 chia het cho n khi 5 chia het cho n

do do n thuoc U(5)={1;5}

vay n=1 hoac n=5

xin loi nhe tu tu roi minh giai tiep nhe

30 tháng 7 2018

a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ    \(n\ne3\)

+, Nếu n - 3 = -1 thì n = 2

+' Nếu n - 3 = 1 thì n =  4 

+, Nếu n - 3 = -7 thì n = -4                                                                                                                                                                            +, Nếu n - 3 = 7 thì n = 10

Vậy n \(\in\left\{2;4;-4;10\right\}\)

b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)

+, Nếu n + 2 = -1 thì n = -1

+, Nếu n + 2 = 1 thì n = -1

+, Nếu n + 2= 2 thì n = 0

+, Nếu n + 2 = -2  thì n = -4

+, Nếu n + 2 = 3 thì n = 1

+, Nếu n + 2 = -3 thì n = -5

+, Nếu n + 2= 6 thì n = 4

+, Nếu n + 2 = -6 thì n = -8

Vậy cx như câu a nhá 

c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)

Bạn làm tương tự như 2 câu trên nhá

d,

 Để 3n+ 2chia hết cho n-1  thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)

Rồi lm tương tự 

Chúc bạn làm tốt