K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

Aki Tsuki Mysterious Person Phùng Khánh Linh Nhã DoanhQuoc Tran Anh Le Nguyễn Thị Ngọc Thơ lê thị hương giang giúp mình vs

29 tháng 7 2018

a) \(x\ne yvàx;y>0\)

ta có : \(P=\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y\)

\(\Leftrightarrow P=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}-y\)

\(\Leftrightarrow P=\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}-\sqrt{y}\right)-y\)

\(\Leftrightarrow P=2\sqrt{y}-y\)

b) ta có : \(P-1=2\sqrt{y}-y-1=-\left(\sqrt{y}-1\right)^2\le0\)

\(\Rightarrow P\le1\)

bài này không thể chứng minh \(P< 1\) đc .

24 tháng 9 2018

ĐKXĐ: x≠y,x>0,y>0

a) \(P=\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}-\dfrac{x+2\sqrt{xy}+y-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y=\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}-y=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}-y=2\sqrt{y}-y\)b) Ta có \(\left(\sqrt{y}-1\right)^2>0\Leftrightarrow y-2\sqrt{y}+1>0\Leftrightarrow1>2\sqrt{y}-y\Leftrightarrow P< 1\)

16 tháng 6 2018
https://i.imgur.com/Godbi3O.jpg
2 tháng 3 2018

༺ ๖ۣۜPhạm ✌Tuấn ✌Kiệτ ༻Tâm đường tròn ở đâu

4 tháng 3 2018

R là số thực nhỉ???

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/voi-0-xy-dfrac12-chung-minhdfracsqrtxy1dfracsqrtyx1-dfrac2sqrt23.461470553384

9 tháng 7 2023

Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))

\(\Leftrightarrow x=4y\)

Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)

\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)