Một chiếc bè bằng gỗ trôi trên sông. Khi cách bến phà 15km thì bị một canô chạy cùng chiều vượt qua. Sau khi vượt qua bè được 45ph thì ca nô quay lại và gặp bè ở một nơi chỉ còn cách bến phà 6km. Tìm vận tốc nước chảy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là vị trí mà tại đó ca nô vượt qua bè, v1 là vận tốc của ca nô so với nước, v2 là vận tốc của dòng nước.
Trong thời gian t1 = 45’ = 0,75(h) ca nô đi được quãng đường là :
AC = ( v1 + v2 )t1. trong thời gian đó bè trôi được quãng đường AD = v2t1.
Khi ca nô quay lại thì khoảng cách giữa ca nô và bè là: CD =AC - AD
=> CD = (v1+v2)t1 - v2t1
= v1t1 + v2t1 - v2t1
= v1t1 (1)
Giả sử bè và ca nô gặp nhau tại E, ta có : EB = 6 km
Gọi t là thời gian ca nô và bè đi để gặp nhau kể từ lúc ca nô quay lại, ta có:
t = CD/(v1-v2)+v2
= CD/v1
=> CD = v1t (2)
Từ (1) và (2) => t = t1 = 0,75 (h)
Theo đề bài ta có:AD +DE + EB = 15(km) và EB = 6 (km)
AD +DE = 15 - 6 = 9 (km) = AE và AE là quãng đường bè trôi trong thời gian t’ = t + t1 = 0,75 + 0,75 = 1,5 (h)
Vậy vận tốc của dòng nước là:
v2 = AE/t' = 9/1,5 = 6 (km/h)
Quãng đường cano đi được sau khi vượt bè 45 phút là:
S1=(v+vn)0.75
Quãng đường bè đi được khi cano bắt đầu quay lại là:
S2= 0.75vn
Thời gian kể từ khi cano bắt đầu quay lại đến khi gặp bè là:
\(t=\frac{S1-S2}{\left(v-vn+vn\right)}=0,75\left(h\right)\)
Quãng đường bè trôi được từ khi cano vượt đến khi gặp lại cano là:
S=15-6=9 (km)
Vận tốc nước chảy là:
Vn(0.75+0.75)=9 ⇒ Vn=6 (km/h).
Một tên nhà giàu keo kiệt thuê người đào giếng . Người thợ đòi tiền công 100 đồng , tên nhà giàu không bằng lòng vì chê đắt quá . Người thợ bèn nói : " Thế thì tính như sau : 1m đầu trả 1 đồng , 1m thứ hai trả 2 đồng , 1m thứ ba trả 4 đồng , 1m thứ tư trả 8 đồng ,..., cứ trả như thế cho đến khi xong việc " . Tên nhà giàu nghĩ là quá rẻ nên bằng lòng ngay . Hãy nghĩ xem tên nhà giàu phải trả bao nhiêu tiền công khi giếng đào sâu tới 10m ?
Ta thấy :
Đào 1 m : Trả 1 đồng
Đào 2 m : Trả 1 x 2 = 2 đồng
Đào 3 m : Trả 1 x 2 x 3 = 6 đồng
.....................................................
Đào 10 m : Trả 1 x 2 x 2 x ... x 2 = 512 đồng ( có 9 thừa số 2 )
Số tiền cần trả :
1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 = 1023 đồng
Gọi A là vị trí mà tại đó ca nô vượt qua bè, v1 là vận tốc của ca nô so với nước, v2 là vận tốc của dòng nước.
Trong thời gian t1 = 45’ = 0,75(h) ca nô đi được quãng đường là :
AC = ( v1 + v2 )t1. trong thời gian đó bè trôi được quãng đường AD = v2t1.
Khi ca nô quay lại thì khoảng cách giữa ca nô và bè là: CD =AC - AD
=> CD = (v1+v2)t1 - v2t1
= v1t1 + v2t1 - v2t1
= v1t1 (1)
Giả sử bè và ca nô gặp nhau tại E, ta có : EB = 6 km
Gọi t là thời gian ca nô và bè đi để gặp nhau kể từ lúc ca nô quay lại, ta có:
t = CD/(v1-v2)+v2
= CD/v1
=> CD = v1t (2)
Từ (1) và (2) => t = t1 = 0,75 (h)
Theo đề bài ta có:AD +DE + EB = 15(km) và EB = 6 (km)
AD +DE = 15 - 6 = 9 (km) = AE và AE là quãng đường bè trôi trong thời gian t’ = t + t1 = 0,75 + 0,75 = 1,5 (h)
Vậy vận tốc của dòng nước là:
v2 = AE/t' = 9/1,5 = 6 (km/h)
Khá giống câu rơi phao mà bạn đã hỏi.
Vẽ hình minh họa:
A là điểm gặp bè lần 1, C là điểm cano quay lại bắt đầu đuổi bè, D là vị trí của bè khi cano bắt đầu quay lại, B là điểm cano và bè gặp lần thứ 2.
Độ dài các đoạn AC, BC, AD, DB là:
\(S_{AC}=\left(v+v_n\right)t\\ S_{BC}=\left(v-v_n\right)t'\\ S_{AD}=v_n.t\\ S_{DB}=v_n.t'\)
Do AC = AD+DB+BC
\(\Rightarrow\left(v+v_n\right)t=v_n.t+v_n.t'+\left(v-v_n\right)t'\\ \Leftrightarrow v.t+v_n.t=v_n.t+v_n.t'+v.t'-v_n.t'\\ \Leftrightarrow v.t=v.t'\\ \Leftrightarrow t'=t=0,75\left(h\right)\)
Do AB = AD+DB
\(\Rightarrow S_{AB}=v_n.t+v_n.t'\\ \Rightarrow v_n=\dfrac{S_{AB}}{t+t'}\\ v_n=\dfrac{9}{1,5}=6\left(km\h\right)\)
Vận tốc dòng nước là 6km/h
Gọi vận tốc ca nô là x(km/h), x > 3. Vận tốc ca nô xuôi dòng là x + 3(km/h)
Thời gian ca nô xuôi dòng từ A đến B là (giờ)
Vận tốc ca nô ngược dòng là x - 3 (km/h)
Quãng đường ca nô ngược dòng từ B đến địa điểm gặp bè là : 40 - 8 = 32 km
Thời gian ca nô ngược dòng từ B đến địa điểm gặp bè là: (giờ)
Thời gian bè trôi là:
Ta có phương trình:
So sánh với điều kiện thì chỉ có nghiệm x = 27 thỏa mãn, suy ra vận tốc của ca nô là 27km/h.
Chọn đáp án C
Gọi x là vận tốc riêng của ca nô ( ĐK : x > 2; km/h)
Vận tốc xuôi dòng : x +2 (km/h);
Vận tốc ngược dòng : x - 2 ( km/h)
Thời gian ca nô xuôi dòng 144 km: \(\frac{144}{x+2}\) ( h)
T/g ca nô ngược dòng đến khi gặp bè trôi : \(\frac{144-18}{x-2}\)(h)
Vì thời gian bè trôi và ca nô đi đến điểm gặp nhau là bằng nhau.
Ta có phương trình : \(\frac{144}{x+2}+\frac{144-18}{x-2}=\frac{18}{2}\Leftrightarrow\frac{144}{x+2}+\frac{126}{x-2}=9\Leftrightarrow9x.\left(x-30\right)=0\)
<=> x= 0 ( loại); x = 30 ( thỏa mãn)
Vậy vận tốc riêng của ca nô là 30km/h
P/s : Tham khảo
Gọi : A là điểm gặp bè lần 1 ; C là điểm cano quay lại ; D là vị trí của bè khi cano bắt đầu quay lại ; B là điểm cano và bè gặp lần thứ 2
Độ dài các đoạn AC ; BC ; AD ; DB là :
\(S_{AC}=\left(v+v_n\right).t\)
\(S_{BC}=\left(v-v_n\right).t'\)
\(S_{AD}=v_n.t\)
\(S_{DB}=v_n.t'\)
Do \(AC=AD+DB+BC\)
\(\Rightarrow\left(v+v_n\right).t=v_n.t=v_n.t'=\left(v-v_n\right).t'\)
\(\Leftrightarrow v.t+v_n.t=v_n.t+v_n.t'+v.t'\)
\(\Leftrightarrow v.t=v.t'\)
\(\Leftrightarrow t'=t=0,75\left(h\right)\)
Do \(AB=AD+DB\)
\(\Rightarrow S_{AB}=v_n.t+v_n.t'\)
\(\Rightarrow v_n=\dfrac{S_{AB}}{t+t'}\)
\(v_n=\dfrac{9}{1,5}=6\) (km/h)
Vậy vận tốc nước chảy là 6km/h
mình nghĩa là vậy nếu sai bỏ qua
45 phút đi được số km là
15-6=9(km)
vận tốc nước là
v=s:t=9:0.75=12(km/h)