Cho hàm số \(y=f\left(x\right)=\sqrt{x}\)
a) Chứng minh hàm số đồng biến
b) Trong các biến A(4;2), B(2;1),C(9;3),D(8;\(2\sqrt{2}\)) điểm nào thuộc và điểm nào không thuộc đồ thị hàm số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{3}}{2}< 1;\dfrac{\sqrt[3]{26}}{3}< 1;\pi>1;\dfrac{\sqrt{15}}{4}< 1\)
Hàm số đồng biến là: \(log_{\pi}x\)
Hàm số nghịch biến là: \(\left(\dfrac{\sqrt{3}}{2}\right)^x;\left(\dfrac{\sqrt[3]{26}}{3}\right)^x;log_{\dfrac{\sqrt{15}}{4}}x\)
Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$
b.
$F(0)=(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$
\(y=f\left(x\right)=6x-1-2x\sqrt{5}+\sqrt{5}=x\left(6-2\sqrt{5}\right)+\sqrt{5}-1\)
Vì \(6-2\sqrt{5}\ne0\) nên hs bậc nhất
Ta có \(6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2>0\left(6-2\sqrt{5}\ne0\right)\) nên hs đồng biến trên R
a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến
b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:
\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)
\(=9-8+\sqrt{2}-1\)
\(=\sqrt{2}\)
a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.
b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`
`=> y=\sqrt2` khi `x=3+2\sqrt2`
Lời giải:
a. Hệ số 2>0 nên hàm đồng biến
b. Hệ số $1-\sqrt{2}<0$ nên hàm nghịch biến
c. Hệ số $-5<0$ nên hàm nghịch biến
d. Hệ số $1+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến
e. Hệ số $\sqrt{3}-1>0$ nên hàm đồng biến
f. Hệ số $2+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến.
Cho hàm số y = f(x) = \(\sqrt{x}\)
a) TXĐ: D = \(\left\{x|x\ge0\right\}\), \(x_1\ne x_2\), \(x_1,x_2\in D\)
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\sqrt{x_1}-\sqrt{x_2}}{x_1-x_2}=\dfrac{x_1-x_2}{\left(x_1-x_2\right)\left(\sqrt{x_1}-\sqrt{x_2}\right)}\)
\(=\dfrac{1}{\sqrt{x_1}-\sqrt{x_2}}>0\)
Vậy hàm số \(y=f\left(x\right)=\sqrt{x}\) đồng biến
b) Những điểm thuộc đồ thị hàm số là:
A(4;2) , C(9;3), D(8;\(2\sqrt{2}\))
Điểm B(2;1) không thuộc đồ thị hàm số