K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

\(\dfrac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)

\(=\dfrac{\left(x-1\right)^2\left(x^2+x+1\right)}{\left(x^2+2\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{x^2+2}\ge0\forall x\) (đpcm)

Dấu "=" xảy ra khi x = 1

18 tháng 8 2017

Bn kia giải bài 1 r nên mk giải bài 2 nha!

Sửa lại:\(\dfrac{x^7+x^2+1}{x^8+x+1}\)

\(\dfrac{x^7+x^2+1}{x^8+x+1}=\dfrac{x^7-x+x^2+x+1}{x^8-x^2+x^2+x+1}\)

\(=\dfrac{x\left(x^6-1\right)+x^2+x+1}{x^2\left(x^6-1\right)+x^2+x+1}\)

\(=\dfrac{x\left(x^3-1\right)\left(x^3+1\right)+x^2+x+1}{x^2\left(x^3-1\right)\left(x^3+1\right)+x^2+x+1}\)

\(=\dfrac{x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x^2+x+1}{x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x^2+x+1}\)

\(=\dfrac{\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)}{\left(x^2+x+1\right)(x^6-x^5+x^3-x^2+1)}\)

Cả tử và mẫu đều có nhân tử:\(x^2+x+1>1\Rightarrowđpcm\)

25 tháng 2 2020

a. c(x)=x5−2x3+3x4−9x2+11x−6−(3x4+x5−2x3−8−10x2+9x)

c(x)=x2+2x+2

b. Để c(x)=2x+2 thì x2=0⇒x=0

c. Với c(x)=2012, ta có:

c(x)=x2+2x+2=(x+1)2+1=2012

⇔(x+1)2=2011⇒x+1∉Z⇒x∉Z

30 tháng 10 2018

a) ĐK: \(x\ge0,x\ne1,x\ne\frac{1}{4}\)

\(A=1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)

\(A=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(A=1+\left[\frac{2\sqrt{x}-1}{1-\sqrt{x}}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(A=1-\sqrt{x}+\frac{x\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(A=\frac{x+1}{x+\sqrt{x}+1}\)

Để \(A=\frac{6-\sqrt{6}}{5}\Rightarrow\frac{x+1}{x+\sqrt{x}+1}=\frac{6-\sqrt{6}}{5}\)

\(\Rightarrow5x+5=\left(6-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+6-\sqrt{6}\)

\(\Rightarrow\left(1-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+1-\sqrt{6}=0\)

\(\Rightarrow x-\sqrt{6}.\sqrt{x}+1=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{\sqrt{2}+\sqrt{6}}{2}\\\sqrt{x}=\frac{-\sqrt{2}+\sqrt{6}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\left(tmđk\right)\)

b) Xét \(A-\frac{2}{3}=\frac{x+1}{x+\sqrt{x}+1}-\frac{2}{3}=\frac{3x+3-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}\)

Do \(x\ge0,x\ne1,x\ne\frac{1}{4}\Rightarrow\left(\sqrt{x}-1\right)^2>0\)

Lại có \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)+\frac{3}{4}>0\)

Nên \(A-\frac{2}{3}>0\Rightarrow A>\frac{2}{3}\).

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

26 tháng 11 2016

a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)

\(=\frac{x^2+4x+4}{x^2}\)

\(\left(\frac{x+2}{x}\right)^2\)

=>phép chia = 1 với mọi x # 0 và x#-1

b)Cm tương tự

26 tháng 11 2016

khó quá

20 tháng 6 2020

1) Để phân số \(\frac{14n+3}{21n+5}\) là PSTG thì

ƯC(14n+3, 21n+5)={-1,1}

Gọi d là UC của 14n+3 và 21n+5

⇒14n+3⋮d

21n+5⋮d

⇒3(14n+3)⋮d

2(21n+5)⋮d

⇒42n+9⋮d

42n+10⋮d

⇒42n+9-(42n+10)⋮d

⇒42n+9-42n-10⋮d

⇒-1⋮d

⇒d={1, -1)

⇒ƯC(14n+3, 21n+5)={-1,1}

Vậy phân số................

2)\(\text({\frac{1}{4}.x+\frac{3}{4}.x})^{2}\)=\(\frac{5}{6}\)

\(\text((\frac{1}{4}+\frac{3}{4}).x)^2=\frac{5}{6}\)

\(\text{(1x)}^2\)=\(\frac{5}{6}\)

⇒x=....(mình ko tính dc)

Vậy x∈ϕ

3) A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)

=\(\frac{3.8.15...899}{4.9.16...900}\)

=\(\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)

=\(\frac{1.2.3...29}{2.3.4...30}.\frac{3.4.5....31}{2.3.4...30}\)

=\(\frac{1}{30}.\frac{31}{2}\)

=\(\frac{31}{60}\)

20 tháng 6 2020

gọi UCLN ( 14n+ 3 ; 21n +5 ) là d

=> 14n+ 3⋮d và 21n +5⋮d

=> 42n + 9⋮d và 42n + 10⋮d

=> 42n + 10 - (42n + 9) ⋮ d

=> 42n + 10 - 42n - 9⋮ d

=> 1⋮ d

=> p/s ...là phân số tối giản