K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

A B C M

Nối A với M

Xét tam giác MAB và tam giác MAC

có AB=AC (gt)

AM chung

BM=MC(vì M là trung điểm BC)

=>Tam giác MAB=MAC(c.c.c)

Chúc Bạn Học Tốt

18 tháng 8 2017

Xét ΔMAB và ΔMAC có:

AB = AC (gt)

BM = MC ( M là tđ BC)

AM chung

=> ΔMAB = ΔMAC (c.c.c)

18 tháng 8 2017

Sửa để cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. CM: tam giác MAB = tam giác MAC

A B C M

Xét \(\Delta MAB\) và \(\Delta MAC\) có:

AB = AC (gt)

MB = MC (gt)

AM là cạnh chung

\(\Rightarrow\Delta MAB=\Delta MAC\)(c-c-c)

17 tháng 8 2017

A B C M

a, Xét \(\Delta MAB\) và \(\Delta MAC\) có:

AB = AC (gt)

MB = MC (gt)

AM là cạnh chung

\(\Rightarrow\Delta MAB=\Delta MAC\) (c.c.c)

b, Vì \(\Delta MAB=\Delta MAC\Rightarrow\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) (1)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) (2)

Từ (1) và (2) => \(\widehat{AMB}=\widehat{AMC}=90^o\)

Vậy \(AM⊥BC\)

c, Từ \(\Delta MAB=\Delta MAC\Rightarrow\widehat{BAM}=\widehat{CAM}\) (hai góc tương ứng)

Vậy AM là tia phân giác của góc BAC

17 tháng 8 2017

câu c AM phải là phân giác góc BAC chứ

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

19 tháng 8 2017

A C E D B M N

2 tháng 1 2020

a) Xét ΔADE và ΔCFE có:

AE=EC (E là trung điểm của AC)

ED=EF (E là trung điểm của DF)

∠AED= ∠CEF (đối đỉnh)

=>ΔADE=ΔCFE (c.g.c)

=>∠DAE=∠ECF (2 góc tương ứng)

=>DA//CF

Từ ΔADE=ΔCFE (cmt)

=>AD=CF

Mà AD=DB (D là trung điểm của AB)

=>BD=CF

3 tháng 1 2020

bạn biết làm có mỗi câu a thui hả