K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 8 2021

\(\left(1+3^2\right)\left(x^2+y^2\right)\ge\left(x+3y\right)^2=10^2\)

\(\Leftrightarrow x^2+y^2\ge10\)

Dấu \(=\)khi \(\hept{\begin{cases}x+3y=10\\\frac{x}{1}=\frac{y}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\).

25 tháng 8 2021

Áp dụng bđt Cauchy-Schwarz dạng Engel : \(x^2+y^2=\frac{x^2}{1}+\frac{9y^2}{9}\ge\frac{\left(x+9y\right)^2}{1+9}=\frac{10^2}{10}=10\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{1}=\frac{3y}{9}=\frac{x+3y}{1+9}=\frac{10}{10}=1\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

23 tháng 3 2019

Ta có:\(\left(1+9\right)\left(x+3y\right)\ge\left(\sqrt{x}+3\sqrt{3y}\right)^2\)

\(\Rightarrow\sqrt{x}+3\sqrt{3y}\le10\)

Đặt \(P=\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\)

\(P=\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{27}{\sqrt{3y}}+3\sqrt{3y}-\left(\sqrt{x}+3\sqrt{3y}\right)\)

\(P\ge2+18-10=10\)

"="<=>x=1;y=3

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Áp dụng BĐT SVac-xơ:

\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{9}{\sqrt{3y}}+\frac{9}{\sqrt{3y}}+\frac{9}{\sqrt{3y}}\geq \frac{(1+3+3+3)^2}{\sqrt{x}+3\sqrt{3y}}\)

\(\Leftrightarrow \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\geq \frac{100}{x+3\sqrt{3y}}(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x+3y)(1+9)\geq (\sqrt{x}+3\sqrt{3y})^2\)

\(\Rightarrow \sqrt{x}+3\sqrt{3y}\leq \sqrt{10(x+3y)}\leq 10(2)\) do \(x+3y\leq 10\)

Từ \((1);(2)\Rightarrow \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\geq \frac{100}{x+3\sqrt{3y}}\geq \frac{100}{10}=10\) (đpcm)

Dấu bằng xảy ra khi \(\frac{\sqrt{x}}{1}=\frac{\sqrt{3y}}{3}; x+3y=10\Rightarrow x=1;y=3\)

5 tháng 4 2016

dùng buniacosky với x+3y<10 là dc

5 tháng 4 2016

Giải ra

9 tháng 7 2019

ta có\

\(\left(\sqrt{x}+2\sqrt{y}\right)^2\subseteq\left(1^2+2^2\right)\left(x+y\right)\)

\(< =>10^2\subseteq5\left(x+y\right)\)

\(< =>20\subseteq x+y\)

chết mik làm rồi ra v

19 tháng 6 2015

+\(10=x+3y=x+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge10\sqrt[10]{\frac{1}{3^9}x.y^9}\)

\(=\frac{10}{3}.\sqrt[10]{3}.\sqrt[10]{xy^9}\)

\(\Rightarrow xy^9\le3^9\)

+\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{3}{\sqrt{3y}}+\frac{3}{\sqrt{3y}}+.....+\frac{3}{\sqrt{3y}}\)

\(\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9x.y^9}}}\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9.3^9}}}=10\)

Dấu "=" xảy ra khi và chỉ khi \(x=1;y=3\)

x + 25 = 64

x         = 64 - 25

x         = 39

Vậy x = 39

NV
22 tháng 3 2022

\(P=\left(x^2+y^2+2xy\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{x^2+y^2+2xy}{x^2+y^2}\)

\(P=\left(x^2+y^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2xy\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+1+\dfrac{2xy}{x^2+y^2}\)

\(P\ge2xy.\dfrac{2}{xy}+\dfrac{2\left(x^2+y^2\right)}{xy}+1+\dfrac{2xy}{x^2+y^2}\)

\(P\ge\dfrac{x^2+y^2}{2xy}+\dfrac{2xy}{x^2+y^2}+\dfrac{3}{2}\left(\dfrac{x^2+y^2}{xy}\right)+5\)

\(P\ge2\sqrt{\dfrac{2xy\left(x^2+y^2\right)}{2xy\left(x^2+y^2\right)}}+\dfrac{3}{2}.\dfrac{2xy}{xy}+5=10\)

Dấu "=" xảy ra khi \(x=y\)

3 tháng 5 2017

\(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)

\(=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\left(\dfrac{4x}{5}+\dfrac{4y}{5}\right)\)

\(\ge2.6+2+\dfrac{4}{5}.10=22\)

Vậy GTNN là P = 22 khi x = y = 5

31 tháng 7 2018

=2018    khi x-1=0  suy ra x=1

31 tháng 7 2018

câu b câu c bạn làm rồi mk chỉ bổ sung   b,y=-2    c,x=1,y=-3

30 tháng 7 2017

\(\dfrac{x}{3}=\dfrac{y}{2};\dfrac{x}{4}=\dfrac{z}{5}\)\(x+y-z=10\)

Ta có:

\(\dfrac{x}{3}=\dfrac{y}{2}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{8};\dfrac{x}{4}=\dfrac{z}{5}\Leftrightarrow\dfrac{x}{12}=\dfrac{z}{15}\)

\(\Rightarrow\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}\)\(x+y-z=10\)

AD tính chất DTS bằng nhau ta có:

\(\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{12+8-15}=\dfrac{10}{5}=2\)

+) \(\dfrac{y}{8}=2\Rightarrow y=16\)

+) \(\dfrac{x}{12}=2\Rightarrow x=42\)

+) \(\dfrac{z}{15}=2\Rightarrow z=30\)

Vậy \(x=42;y=16;z=30\)

c,\(\dfrac{x}{2}=\dfrac{y}{5};\dfrac{y}{3}=\dfrac{z}{2}\)\(2x+3y-4z=34\)

Ta có:

\(\dfrac{x}{2}=\dfrac{y}{5}\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{15};\dfrac{y}{3}=\dfrac{z}{2}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{10}\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)

Ta lại có:

\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}\)\(2x+3y-4z=34\)

AD tính chất DTS bằng nhau ta có:

\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{12+45-40}=\dfrac{34}{17}=2\)

+) \(\dfrac{2x}{12}=2\Rightarrow x=12\)

+) \(\dfrac{3y}{45}=2\Rightarrow y=30\)

+) \(\dfrac{4z}{40}=2\Rightarrow z=20\)

Vậy \(x=12;y=30;z=20\)

\(\)

31 tháng 7 2017

kcj