tìm x biết :
a) 3x2-6x=(x2-4x+4) b) x3-7x2+6x=0 c) x4+4x3+4x2=25
Giúp mik với mình cần 2h chiều nay =))))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(36x^3-4x=0\)
\(\Leftrightarrow4x\left(9x^2-1\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)
b) Ta có: \(3x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Bài 2:
a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)
b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)
c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)
d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)
f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)
g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)
i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)
a: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(x+1\right)\left(3x-10\right)\)
b: \(x^2+6x+9-4y^2\)
\(=\left(x+3\right)^2-4y^2\)
\(=\left(x+3-2y\right)\left(x+3+2y\right)\)
c: \(x^2-2xy+y^2-5x+5y\)
\(=\left(x-y\right)^2-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-5\right)\)
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
A = \(4x^2-3x+7x^2+2x-5\)
\(11x^2-3x+2x-5\)
\(11x^2-x-5\)
B = \(3x+7y-6x-8+y-2\)
\(3x+7y-6x-10+y\)
\(- 3x+7y-10+y\)
\(3x+8y-10\)
C = chịu
D= \(6x^4-3x^2+x^2-4x+3.4-x+2\)
\(6x^4-3x^2+x^2-4x;12-x+2\\ \)
\(6x^4-3x^2+x^2-4x+14-x\)
\(6x^4-2x^2-4x+14-x\)
\(6x^4-2x^2-5x+14\)
b: 4x^2-20x+25=(x-3)^2
=>(2x-5)^2=(x-3)^2
=>(2x-5)^2-(x-3)^2=0
=>(2x-5-x+3)(2x-5+x-3)=0
=>(3x-8)(x-2)=0
=>x=8/3 hoặc x=2
c: x+x^2-x^3-x^4=0
=>x(x+1)-x^3(x+1)=0
=>(x+1)(x-x^3)=0
=>(x^3-x)(x+1)=0
=>x(x-1)(x+1)^2=0
=>\(x\in\left\{0;1;-1\right\}\)
d: 2x^3+3x^2+2x+3=0
=>x^2(2x+3)+(2x+3)=0
=>(2x+3)(x^2+1)=0
=>2x+3=0
=>x=-3/2
a: =>x^2(5x-7)-3(5x-7)=0
=>(5x-7)(x^2-3)=0
=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)
\(A=5x^3-7x^2+3x^3-4x^2+x^2-x^3+5x-1=7x^3-10x^2+5x-1\)
\(B=5x^3+3x^2-7x^4-5x^3+4x^2-x^4+3=-8x^4+7x^2+3\)
a) \(3x^2-6x=x^2-4x+4\)
\(\Leftrightarrow2x^2-2x-4=0\)
\(\Leftrightarrow2\left(x^2-x-2\right)=0\)
\(\Leftrightarrow2\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy \(S=\left\{2;-1\right\}\)
b) \(x^3-7x^2+6x=0\)
\(\Leftrightarrow x\left(x^2-7x+6\right)=0\)
\(\Leftrightarrow x\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow x=0;x-6=0;x-1=0\)
\(\Leftrightarrow x=0;x=6;x=1\)
Vậy \(S=\left\{0;6;1\right\}\)
c) \(x^4+4x^3+4x^2=25\)
\(\Leftrightarrow x^2\left(x^2+4x+4\right)=25\)
\(\Leftrightarrow x^2\left(x+2\right)^2-25=0\)
\(\Leftrightarrow\left[x\left(x+2\right)\right]^2-5^2=0\)
\(\Leftrightarrow\left(x^2+2x-5\right)\left(x^2+2x+5\right)=0\)
\(\Leftrightarrow\left(x+1-\sqrt{6}\right)\left(x+1+\sqrt{6}\right)=0\) (vì \(x^2+2x+5>0\) )
\(\Leftrightarrow\orbr{\begin{cases}x+1-\sqrt{6}=0\\x+1+\sqrt{6}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-1\\x=-\sqrt{6}-1\end{cases}}\)
Vậy \(S=\left\{\sqrt{6}-1;-\sqrt{6}-1\right\}\)
a,\(3x^2-6x=\left(x^2-4x+4\right)\)
\(3x^2-6x-x^2+4x-4=0\)
\(3x^2-x^2-6x+4x-4=0\)
\(2x^2-2x-4=0\)
\(2x^2+2x-4x-4=0\)
\(2x\left(x+1\right)-4\left(x+1\right)=0\)
\(\left(2x-4\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b, \(x^3-7x^2+6x=0\)
\(x^3-x^2-6x^2+6x=0\)
\(x^2\left(x-1\right)-6x\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^2-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=\pm6\end{cases}}\)