Giải pt : \(\sqrt{3x-4}+2=\sqrt{18x-360}+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\sqrt{9-12x+4x^2}=4\\ \sqrt{\left(3-2x\right)^2}=4\\ \left|3-2x\right|=4\\ \Rightarrow\left[{}\begin{matrix}3-2x=4\\3-2x=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=-1\\2x=7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\)
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
đkxđ: x≥\(-\dfrac{1}{2}\)
\(\sqrt{18x+9}-\sqrt{8x+4}+\dfrac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\dfrac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\left(3-2+\dfrac{1}{3}\right)\sqrt{2x+1}=4\)
\(\Leftrightarrow\dfrac{4}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\sqrt{2x+1}=3\Leftrightarrow2x+1=9\Leftrightarrow x=4\)
vậy x = 4
Bình phương 2 vế ,ta có:
\(26x+13+\dfrac{1}{9}\left(2x+1\right)-2\sqrt{9.4\left(2x+1\right)^2}-2.\dfrac{1}{3}\sqrt{4\left(2x+1\right)^2}+2.\dfrac{1}{3}\sqrt{9\left(2x+1\right)^2}=16\) \(\dfrac{236}{9}x+\dfrac{118}{9}-2.6.\left(2x+1\right)-\dfrac{2}{3}.2.\left(2x+1\right)+\dfrac{2}{3}.3.\left(2x+1\right)=16\)
\(\dfrac{236}{9}x+\dfrac{118}{9}-24x-12-\dfrac{8}{3}x-\dfrac{4}{3}+4x+2=16\)
\(\dfrac{32}{9}x+\dfrac{16}{9}=16\)
\(\dfrac{16}{9}\left(2x+1\right)=16\)
\(2x+1=9\Rightarrow2x=8\Rightarrow x=4\)
Vậy x=4
2: ĐKXĐ: x>=0
\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)
=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)
=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)
=>\(-2\sqrt{3x}=-4\)
=>\(\sqrt{3x}=2\)
=>3x=4
=>\(x=\dfrac{4}{3}\left(nhận\right)\)
3:
ĐKXĐ: x>=0
\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)
=>\(13\sqrt{2x}=20+3\sqrt{2}\)
=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)
=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)
=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)
4: ĐKXĐ: x>=-1
\(\sqrt{16x+16}-\sqrt{9x+9}=1\)
=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0(nhận)
5: ĐKXĐ: x<=1/3
\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)
=>\(5\sqrt{1-3x}=10\)
=>\(\sqrt{1-3x}=2\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1(nhận)
6: ĐKXĐ: x>=3
\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)
=>x-3=16
=>x=19(nhận)
\(4\sqrt{2x}+21\sqrt{2x}=9-5\sqrt{2x}\)
\(30\sqrt{2x}=9\)
\(\sqrt{2x}=\dfrac{3}{10}\)
\(x=0.045\)
2√8x + 7√18x = 9 - √50x Đk x >= 0
(=) 4√2x + 21√2x + 5√2x = 9
(=) 30 √2x = 9
(=) √2x = 9/30
(=) 2x =9/100
(=) x = 9/200=0,045
\(\sqrt{2x+1}-\sqrt{18x+9}=\sqrt{32x+16}-18\left(đk:x\ge-\dfrac{1}{2}\right)\)
\(\Leftrightarrow\sqrt{2x+1}-3\sqrt{2x+1}-4\sqrt{2x+1}=-18\)
\(\Leftrightarrow6\sqrt{2x+1}=18\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow2x+1=9\)
\(\Leftrightarrow x=4\left(tm\right)\)
a,ĐK: x≥4
Ta có: \(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}-\sqrt{x-4}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}=4\)
\(\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x-4=4\Leftrightarrow x=8\left(tm\right)\)
b, ĐK: x≥2
Ta có: \(3\sqrt{x-2}-\sqrt{x^2-4}=0\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(3-\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\3-\sqrt{x+2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x+2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)
Bạn tham khảo thêm ở link sau:
https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831