Chứng minh rằng phân số \(\dfrac{n^7+n^2+1}{n^8+n+1}\)không tối giản với mọi n thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n^7+n^2+1}{n^8+n+1}=\frac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n^2+1\right)}=\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n^2+1}\)
=>phân số ban đầu chưa tối giản với mọi n
Ta có :
\(\frac{n^7+n^2+1}{n^8+n+1}=\frac{n^7-n^4+n^4-n+n^2+n+1}{n^8-n^5+n^5-n^2+n^2+n+1}\)
\(=\frac{n^4\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)}{n^5\left(n^3-1\right)+n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)
\(=\frac{n^4\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}{n^5\left(n-1\right)\left(n^2+n+1\right)+n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}\)
\(=\frac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n+1\right)}\)
\(=\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\)
Do phân số \(\frac{n^7+n^2+1}{n^8+n+1}\) còn thu gọi được thành \(\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\) nên nó chưa tối giản (đpcm)
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Giả sử `A=(n+1)/(n+2)` là số nguyên
`=>n+1 vdots n+2`
`=>n+2-1 vdots n+2`
`=>1 vdots n+2`
`=>n+2 in Ư(1)={1,-1}`
`=>n in {-1,-3}`
Mời bạn kiểm tra lại ạ phải thêm `n in N` hoặc `n ne {-1,-3}`
`=>` giả sử sai
`=>` A là phân số tối giản với `n in N`
a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)
Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)
\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Ta có :
+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)
+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)
Vậy...
b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)
Ta có :
\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)
\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)
\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n
Vậy...
Lời giải:
Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)
\(=n(n^3-1)(n^3+1)+n^2+n+1\)
\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)
\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)
Và:
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+(n^2+n+1)\)
\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)
Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.
Lời giải:
Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)
\(=n(n^3-1)(n^3+1)+n^2+n+1\)
\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)
\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)
Và:
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+(n^2+n+1)\)
\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)
Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.