Chi tiết giùm mình nhé, gấp lắm ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6.
Gọi \(M\left(x;y\right)\) là điểm bất kì thuộc \(\Delta\Rightarrow x+5y-1=0\) (1)
Gọi \(M'\left(x';y'\right)\in\Delta'\) là ảnh của \(\Delta\) qua phép tịnh tiến nói trên
\(\Rightarrow\left\{{}\begin{matrix}x'=x+4\\y'=y+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-4\\y=y'-2\end{matrix}\right.\)
Thế vào (1):
\(\Rightarrow x'-4+5\left(y'-2\right)-1=0\)
\(\Leftrightarrow x'+5y'-15=0\)
Hay ảnh của \(\Delta\) qua phép tịnh tiến nói trên là đường thẳng có pt: \(x+5y-15=0\)
7.
Gọi \(M\left(x;y\right)\in\Delta\)
Gọi \(M'\left(x';y'\right)\in\Delta'\Rightarrow2x'+y'-5=0\) (1)
Đồng thời M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\)
\(\left\{{}\begin{matrix}x'=x-4\\y'=y+2\end{matrix}\right.\)
Thế vào (1):
\(\Rightarrow2\left(x-4\right)+1\left(y+2\right)-5=0\)
\(\Leftrightarrow2x+y-11=0\)
Hay phương trình \(\Delta\) có dạng: \(2x+y-11=0\)
\(sin\left(\dfrac{x+\pi}{5}\right)=-\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x+\pi}{5}=-\dfrac{\pi}{6}+k2\pi\\\dfrac{x+\pi}{5}=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{11\pi}{6}+k10\pi\\x=\dfrac{29\pi}{6}+k10\pi\end{matrix}\right.\)
4.
\(2sin\left(2x-10^0\right)=\sqrt{3}\Rightarrow sin\left(2x-10^0\right)=\dfrac{\sqrt{3}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x-10^0=60^0+k360^0\\2x-10^0=120^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=35^0+k180^0\\x=65^0+k180^0\end{matrix}\right.\)
\(\Rightarrow x=\left\{-145^0;35^0;-115^0;65^0\right\}\) có 4 nghiệm
C3
\(sin\left(\dfrac{x+\Pi}{5}\right)=sin\left(\dfrac{-\pi}{6}\right)\)
<=>\(^{\left[{}\begin{matrix}\dfrac{x+pi}{5}=\dfrac{-pi}{6}+k2pi\\\dfrac{x+pi}{5}=\dfrac{7pi}{6}+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{5}=-\dfrac{11pi}{30}+k2pi\\\dfrac{x}{5}=\dfrac{29pi}{30}+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{11pi}{6}+\dfrac{k2pi}{5}\\x=\dfrac{29pi}{6}+\dfrac{k2pi}{5}\end{matrix}\right.\)
\(tanx=-tan\dfrac{\pi}{5}\)
\(\Leftrightarrow tanx=tan\left(-\dfrac{\pi}{5}\right)\)
\(\Leftrightarrow x=-\dfrac{\pi}{5}+k\pi\)
Mình quên mất, nó nằm trong khoảng (π/2; π) nha, mình xin lỗi
\(2x+5y=13\Leftrightarrow x=\frac{13-5y}{2}\Rightarrow\)y là số lẻ.
Đặt \(y=2z+1\left(z\in Z\right)\Rightarrow x=4-5z\)
Vậy tập nghiệm nguyên của phương trình là \(\cdot\left(x;y\right)=\left(4-5z;2z+1\right)\)với z nguyên
Nếu mức tăng dân số mỗi năm là 1,2% thì số dân của xã A tăng lên:
30 250: 100 x 1,2 = 363 (người)
Nếu mức tăng dân số mỗi năm là 1,2% thì số dân của xã A cuối năm nay là:
30 250 + 363 = 30 613 (người)
Đáp số: 30 613 người
1.
\(\left(sinx+1\right)\left(sinx-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sinx=-1\)
\(\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\)
2.
\(sin2x\left(2sinx-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\2sinx-\sqrt{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sinx=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)