B1 : Chứng minh rằng nếu a,b,c là chữ số thỏa mãn \(\overline{ab}:\overline{bc}=a:c\) thì \(\overline{abbb}:\overline{bbbc}=a:c\)
** Gợi ý : Áp dụng t/c dãy tỉ số bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề là : ab : bc = a : c .... ( có gạch ngang )
Ta có :
\(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}=\frac{9a+b}{10b}=\frac{999a+111b}{1110b}=\frac{999a+a+111b}{1110b+c}=\frac{1000a+111b}{1110b+c}=\frac{\overline{abbb}}{\overline{bbbc}}\)
ab¯¯¯¯¯bc¯¯¯¯=ac=9a+b10b=999a+111b1110b=999a+a+111b1110b+c=abbb¯¯¯¯¯¯¯¯¯bbbc¯¯¯¯¯¯¯¯¯
Ta có:
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
Mà: \(\left\{\begin{matrix}\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{10a+b+10b+c}{a+b}=9a+10b+c\\\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{10b+c+10c+a}{b+c}=9b+10c+a\\\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{10c+a+10a+b}{c+a}=9c+10a+b\end{matrix}\right.\)
\(\Rightarrow9a+10b+c=9b+10c+a=9c+10a+b\)
\(\Rightarrow\left\{\begin{matrix}9a=9b=9c\\10b=10c=10a\\c=a=b\end{matrix}\right.\)\(\Rightarrow a=b=c\)
Vậy \(a=b=c\) (Đpcm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{c}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)
\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Có : \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\)( áp dụng dãy tỉ số bằng nhau)
\(=\dfrac{111...11.\left(9a+b\right)}{111..11.10b}\)(có n chữ số 1 trong số 111..111)
\(\dfrac{999..99a+111..11b}{111..110b}=\dfrac{a}{c}=\dfrac{999..99a+a+111..11b}{111..110b+c}=\dfrac{100...000a+111...11b}{111..110b+c}\)=\(\dfrac{\overline{abbb...bb}}{\overline{bbb..bbc}}=\dfrac{a}{c}\)
2) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)
=> a = b = c (đpcm)
soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó
Ta có:
\(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}=\dfrac{9a+b}{10b}=\dfrac{999a+111b}{1110b}=\dfrac{999a+a+111b}{1110b}=\dfrac{1000a+111b}{1110b+c}=\dfrac{\overline{abbb}}{\overline{bbbc}}\)
\(\Rightarrow\) Đpcm.