K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

a) Vì BH là đường cao của ΔABC nên BH ⊥ AC

Ta có: ME ⊥ AC ; BH ⊥ AC

=> ME // BH 

Vậy ME//BH

b) Ta có: ME // BH ; NP //BH 

=> ME // NP

Xét ΔABH có: AM = MB (vì M là trung điểm của AB)

ME // BH(chứng minh phần a)

=> E là trung điểm của AH

=> ME là đường trung bình của ΔABH

=> ME = 1/2 BH (1)

Xét ΔCHB có: NC = NB( vì N là trung điểm của cạnh BC)

NP // BH (giả thiết)

=> P là trung điểm của HC

=> PN là đường trung bình của ΔCBH

=> PN = 1/2 BH (2)

Từ (1) và (2)

=> PN = ME = 1/2 BH 

Vậy ME // NP; ME = NP 

7 tháng 9 2018

#dũnglê

Xem lại đi  ,sai đề ròi nha . Nếu kẻ đường cao AH cho tam giác ABC thì AH vuông góc với BC . Vì N là điểm thuộc cạnh BC nên nếu kẻ NP // BH là điều vô lí .  Hơn nữa giả sử N thuộc cạnh AC thì cũng không thể chứng minh ME // BH . 

(I will draw the picture chứng minh điều vô lí đó   )

N M E A B C H

=> Nếu ta kẻ NP // BH là điều vô lí .

12 tháng 10 2018

Đề bài đúng mà

a: Ta có: ME vuông góc với AC

BH vuông góc với AC

Do đó: ME//BH

b: Xét ΔAHB có ME//BH

nên ME/BH=AM/AB=1/2

=>ME=1/2BH

Xét ΔBHC có NP//BH

nên NP/BH=CN/CB=1/2

=>NP=1/2BH

=>ME//NP và ME=NP

a: Xét ΔNMK co

NE vừa là đường cao, vừa là phân giác

=>ΔNMK cân tại N

=>NM=NK

Xét ΔNMD và ΔNKD có

NM=NK

góc MND=góc KND

ND chung

=>ΔMND=ΔKND

=>góc NKD=90 độ

=>DK vuông góc NP

b: Xét ΔNKM có

MH,NE là đường cao

MH cắt NE tại I

=>I là trực tâm

=>KI vuông góc MN

=>KI//MP

28 tháng 2 2020

a, xét tma giác MNE và tam giác MPE có :

MN = MP và góc MNE = góc MPE do tam giác MNP cân tại M (Gt)

NE = EP do E là trđ của NP (gt)

=> tam giác MNE = tam giác MPE (c-g-c)

=> góc MEN = góc MEP (đn)

mà góc MEN + góc MEP = 180 (kb)

=> góc MEN = 90

=> MN _|_ NP và có M là trđ của PN (Gt)

=> ME là trung trực của NP (đn)

b, xét tam giác MKE và tam giác MHE có : ME chung

góc NME = góc PME do tam giác MNE = tam giác MPE (Câu a)

góc MKE = góc MHE = 90

=> tam giác MKE = tam giác MHE (ch-cgv)

=> MK = MH (đn)

=> tam giác MHK cân tại M (đn)

=> góc MKH = (180 - góc NMP) : 2 (tc)

tam giác MNP cân tại M (Gt) => góc MNP = (180 - góc NMP) : 2 (tc)

=> góc MKH = góc MNP mà 2 góc này đồng vị

=> KH // NP (đl)